Project 1 on Machine Learning,
deadline October 7, 2019

Data Analysis and Machine Learning FYS-STK3155/FYS4155

Department of Physics, University of Oslo, Norway

Oct 6, 2019

Regression analysis and resampling methods

The main aim of this project is to study in more detail various regression methods,
including the Ordinary Least Squares (OLS) method, Ridge regression and finally
Lasso regression. The methods are in turn combined with resampling techniques.

We will first study how to fit polynomials to a specific two-dimensional
function called Franke’s function. This is a function which has been widely
used when testing various interpolation and fitting algorithms. Furthermore,
after having established the model and the method, we will employ resamling
techniques such as cross-validation and/or bootstrap in order to perform a proper
assessment of our models. We will also study in detail the so-called Bias-Variance
trade off.

The Franke function, which is a weighted sum of four exponentials reads as
follows

3 9z —2)% (9y—2)%\ 3 9z +1)2 (9y+1)
f(x’y)_zxeXp(_ i 1 >+4eXp<_ 9 10)

(9z —7)2 (9y — 3)2) 1

1 1 — —exp (—(92 —4)* — 9y — 7)?).

1
— ex
P 5

2

The function will be defined for z,y € [0,1]. Our first step will be to perform

an OLS regression analysis of this function, trying out a polynomial fit with

an z and y dependence of the form [z,y, 2%, y? zy,...]. We will also include

cross-validation (or bootstrap) as resampling technique. As in homeworks 1 and

2, we can use a uniform distribution to set up the arrays of values for x and y, or

as in the example below just a set of fixed values for z and y with a given step

size. We will fit a function (for example a polynomial) of x and y. Thereafter

we will repeat much of the same procedure using the Ridge and Lasso regression
methods, introducing thus a dependence on the bias (penalty) .

© 1999-2019, "Data Analysis and Machine Learning
FYS-STK3155/FYS4155": "http://www.uio.no/studier /emner /matnat/fys/FYS3155/index-
eng.html". Released under CC Attribution-NonCommercial 4.0

license

http://www.uio.no/studier/emner/matnat/fys/FYS3155/index-eng.html
http://www.dtic.mil/dtic/tr/fulltext/u2/a081688.pdf

Finally we are going to use (real) digital terrain data and try to reproduce
these data using the same methods. We will also try to go beyond the second-
order polynomials metioned above and explore which polynomial fits the data
best.

The Python fucntion for the Franke function is included here (it performs
also a three-dimensional plot of it)

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

from random import random, seed

fig = plt.figure()
ax = fig.gca(projection=’3d’)

Make data.

= np.arange(0, 1, 0.05)
np.arange(0, 1, 0.05)
, ¥ = np.meshgrid(x,y)

#
b4
y
X

def FrankeFunction(x,y):
terml = 0.75+%np.exp(-(0.26%x(9%x-2)*x2) - 0.25%((9*y-2)**2))
term2 = 0.75%np.exp(-((9*x+1)*%2)/49.0 - 0.1%(9*y+1))
term3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25*%((9%y-3)*%2))
term4 = -0.2+%np.exp(-(9*x—-4)*x2 - (9*y-7)**2)
return terml + term2 + term3 + term4

z = FrankeFunction(x, y)

Plot the surface.
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)

Customize the z axis.

ax.set_zlim(-0.10, 1.40)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter(’%.02f°))

Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

Part a): Ordinary Least Square on the Franke function with resam-
pling. We will generate our own dataset for a function FrankeFunction(x,y)
with 2,y € [0, 1]. The function f(z,y) is the Franke function. You should explore
also the addition an added stochastic noise to this function using the normal
distribution N (0, 1).

Write your own code (using either a matrix inversion or a singular value
decomposition from e.g., numpy) or use your code from homeworks 1 and 2
and perform a standard least square regression analysis using polynomials in x
and y up to fifth order. Find the confidence intervals of the parameters 3 by
computing their variances, evaluate the Mean Squared error (MSE)

n—1
JS 1 N
MSE(§,9) =~ > (vi — i),

=0

and the R? score function. If §; is the predicted value of the i — th sample
and y; is the corresponding true value, then the score R? is defined as

Zl?:_ol (yl - 52)2
S (yi —)2

where we have defined the mean value of § as

n—1
Z Yi-
=0

)=1-

S

R*(g,

)

g:

S|

Part b) Resampling techniques, adding more complexity. Perform a
resampling of the data where you split the data in training data and test data.
Here you can write your own function or use the function for splitting training
data provided by Scikit-Learn. This function is called train_ test_ split.

It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (sometimes also an additional validation set). There
is no explicit recipe for how much data should be included as training data and
say test data. An accepted rule of thumb is to use approximately 2/3 to 4/5 of
the data as training data.

Implement the k-fold cross-validation algorithm (write your own code) and
evaluate again the MSE function resulting from the test data. You can compare
your own code with that from Scikit-Learn if needed. You can alternatively
write your own bootstrap code.

Part c¢): Bias-variance tradeoff. With a code which does OLS and includes
resampling techniques, we will now discuss the bias-variance tradeoff in the
context of continuous predictions such as regression. However, many of the

intuitions and ideas discussed here also carry over to classification tasks and
basically all Machine Learning algorithms.
Consider a dataset £ consisting of the data X, = {(y;,z;),7=0...n—1}.
Let us assume that the true data is generated from a noisy model

y=f(z)+e
2

Here € is normally distributed with mean zero and standard deviation o~.

In our derivation of the ordinary least squares method we defined then an
approximation to the function f in terms of the parameters 3 and the design
matrix X which embody our model, that is y = X 3.

The parameters 3 are in turn found by optimizing the means squared error
via the so-called cost function

CX.B)= w5 =By,
i=0
Show that you can rewrite this as
Ely -9 = S (i~ EG + - S0 ~E[g)’ + 0

i 7

Explain what the terms mean, which one is the bias and which one is the
variance and discuss their interpretations.

Discuss the bias and variance tradeoff as function of your model complexity
(the degree of the polynomial) and the number of data points, and possibly also
your training and test data.

Try to make a figure similar to Fig. 2.11 of Hastie, Tibshirani, and Friedman,
see the references below. You should include an analysis of the bias and variance
for the test results. Figure 2.11 displays only the test and training MSEs while
indicating regions of low/high bias and variance. You will most likely not get
an equally smooth curve! Note also that when you calculate the bias, in all
applications you don’t know the function values f;. You would hence replace
them with the actual data points y;.

Part d): Ridge Regression on the Franke function with resampling.
Write your own code for the Ridge method, either using matrix inversion or the
singular value decomposition as done in the previous exercise or howework 2
(see also chapter 3.4 of Hastie et al., equations (3.43) and (3.44)). Perform the
same analysis as in the previous exercises (for the same polynomials and include
resampling techniques) but now for different values of A. Compare and analyze
your results with those obtained in parts a-c). Study the dependence on A.

Study also the bias-variance tradeoff as function of various values of the
parameter \. Comment your results.

Part e): Lasso Regression on the Franke function with resampling.
This part is essentially a repeat of the previous two ones, but now with Lasso
regression. Write either your own code or, in this case, you can also use the
functionalities of Scikit-Learn (recommended). Give a critical discussion of
the three methods and a judgement of which model fits the data best.

Part f): Introducing real data. With our codes functioning and having
been tested properly on a simpler function we are now ready to look at real
data. We will essentially repeat in part g) what was done in parts a-e). However,
we need first to download the data and prepare properly the inputs to our
codes. We are going to download digital terrain data from the website https:
//earthexplorer.usgs.gov/,

In order to obtain data for a specific region, you need to register as a user
(free) at this website and then decide upon which area you want to fetch the
digital terrain data from. In order to be able to read the data properly, you
need to specify that the format should be SRTM Arc-Second Global and
download the data as a GeoTIF file. The files are then stored in tif format
which can be imported into a Python program using

scipy.misc.imread

Here is a simple part of a Python code which reads and plots the data from
such files

import numpy as np

from imageio import imread

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

Load the terrain

terrainl = imread(’SRTM_data_Norway_1.tif’)
Show the terrain

plt.figure()

plt.title(’Terrain over Norway 1°)
plt.imshow(terrainl, cmap=’gray’)
plt.xlabel(’°X’)

plt.ylabel(’Y’)

plt.show()

If you should have problems in downloading the digital terrain data, we
provide two examples under the data folder of project 1. One is from a region
close to Stavanger in Norway and the other Mgsvatn Austfjell, again in Norway.
Feel free to produce your own terrain data.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/

Part g) OLS, Ridge and Lasso regression with resampling. Our final
part deals with the parameterization of your digital terrain data. We will apply
all three methods for linear regression as in parts a-c), the same type (or higher
order) of polynomial approximation and the same resampling techniques to
evaluate which model fits the data best.

At the end, you should pesent a critical evaluation of your results and discuss
the applicability of these regression methods to the type of data presented here.

Background literature

1.

For a discussion and derivation of the variances and mean squared errors
using linear regression, see the Lecture notes on ridge regression by Wessel
N. van Wieringen

The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

Give a short description of the nature of the problem and the eventual
numerical methods you have used.

Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

Include the source code of your program. Comment your program properly.

If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

Try to give an interpretation of you results in your answers to the problems.

Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

e Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++4, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

e Use Devilry to hand in your projects, log in at http://devilry.ifi.
uio.no with your normal UiO username and password and choose either
"fysstk3155” or 'fysstk4155’. There you can load up the files within the
deadline.

e Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report file
should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them.

e In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

e In this and all later projects, you should include tests (for example unit
tests) of your code(s).

e Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

http://devilry.ifi.uio.no
http://devilry.ifi.uio.no

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
e Scikit-learn,
e Tensorflow,
e PyTorch and

o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

