Project 1 on Machine Learning, deadline
October 9 (midnight), 2023

Data Analysis and Machine Learning FYS-STK3155/FYS4155

University of Oslo, Norway

September 3

Regression analysis and resampling methods

The main aim of this project is to study in more detail various regression methods,
including the Ordinary Least Squares (OLS) method. In addition to the scientific
part, in this course we want also to give you an experience in writing scientific
reports. The format for the delivery of your answers is namely that of a scientific
report. At for example https://github.com/CompPhysics/MachinelLearning/
blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md we de-
tail how to write a report. Furthermore, at https://github.com/CompPhysics/
MachineLearning/blob/master/doc/Projects/ReportExample/ you can find
examples of previous reports. How to write reports will also be discussed during
the various lab sessions.

A small recommendation when developing the codes here. Instead
of jumping on to the two-dimensional function described below, we recommend
to do the code development and testing with a simpler one-dimensional function,
similar to those discussed in the exercises of weeks 35 and 36. A simple test,
as discussed during the lectures the first two weeks is to set the design matrix
equal to the identity matrix. Then your model should give a mean square error
which is exactly equal to zero. When you are sure that your codes function well,
you can then replace the one-dimensional test function with the two-dimensional
Franke function discussed here.

The Franke function serves as a stepping stone towards the analysis of real
topographic data. The latter is the last part of this project.

Description of two-dimensional function. We will first study how to fit
polynomials to a specific two-dimensional function called Franke’s function. This
is a function which has been widely used when testing various interpolation and
fitting algorithms. Furthermore, after having established the model and the
method, we will employ resamling techniques such as cross-validation and/or

http://www.uio.no/studier/emner/matnat/fys/FYS3155/index-eng.html
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/ReportExample/
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/ReportExample/
http://www.dtic.mil/dtic/tr/fulltext/u2/a081688.pdf

bootstrap in order to perform a proper assessment of our models. We will also
study in detail the so-called Bias-Variance trade off.

The Franke function, which is a weighted sum of four exponentials reads as
follows

49 10

3
+ —exp

flz,y) = §eXp - 1

4 4 4
1 (_(9x—7) (9y—3)>

+ iexp

(_ 9z —2)%2 (9y — 2)2> (_ 9z +1)2 (9y+ 1))

- %exp (—=(9z — 4)* — (9y — 7)?).

4 4

The function will be defined for x,y € [0,1]. In a sense, our data are thus
scaled to a particular domain for the input values.

Our first step will be to perform an OLS regression analysis of this func-
tion, trying out a polynomial fit with an x and y dependence of the form
[,y,22, 92, zy,...]. We will also include bootstrap first as a resampling tech-
nique. After that we will include the cross-validation technique.

We can use a uniform distribution to set up the arrays of values for x and v,
or as in the example below just a set of fixed values for z and y with a given step
size. We will fit a function (for example a polynomial) of x and y. Thereafter
we will repeat much of the same procedure using the Ridge and Lasso regression
methods, introducing thus a dependence on the bias (penalty) .

Finally we are going to use (real) digital terrain data and try to reproduce
these data using the same methods. We will also try to go beyond the second-
order polynomials metioned above and explore which polynomial fits the data
best.

The Python code for the Franke function is included here (it performs also a
three-dimensional plot of it)

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

from random import random, seed

fig = plt.figure()
ax = fig.gca(projection=’3d’)

Make data.

x = np.arange(0, 1, 0.05)
y = np.arange(0, 1, 0.05)
X, y = np.meshgrid(x,y)

def FrankeFunction(x,y):
terml = 0.75%np.exp(-(0.25%(9*x-2)**2) - 0.25*((9*y-2)**2))

term2 = 0.75%np.exp(-((9*x+1)**2)/49.0 - 0.1%(9*y+1))
term3 = 0.5%np.exp(-(9*x-7)**2/4.0 - 0.25%((9*y-3)**2))
term4 = -0.2+#np.exp(-(9*x-4)**2 — (9*xy-7)*%2)

return terml + term2 + term3 + term4

z = FrankeFunction(x, y)

Plot the surface.
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)

Customize the z axis.

ax.set_zlim(-0.10, 1.40)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter (FormatStrFormatter(’%.02f°))

Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

Part a) : Ordinary Least Square (OLS) on the Franke function. We will
generate our own dataset for a function FrankeFunction(z,y) with x,y € [0, 1].
The function f(z,y) is the Franke function. You should explore also the addition
of an added stochastic noise to this function using the normal distribution
N(0,1).

Write your own code (using either a matrix inversion or a singular value
decomposition from e.g., numpy) and perform a standard ordinary least
square regression analysis using polynomials in x and y up to fifth order.

Evaluate the mean Squared error (MSE)

n—1
- 1 N
MSE(y,) =~ > (v —5)*,
=0

and the R? score function. If §; is the predicted value of the i — th sample
and y; is the corresponding true value, then the score R? is defined as

n—1 ~
Zi:o (yi - yz‘)Q

n—1 —)
Zi:() (yz - y)2

where we have defined the mean value of y as

R (y,9)=1-

n—1
y= Z Yi-
i=0

Plot the resulting scores (MSE and R?) as functions of the polynomial degree
(here up to polymial degree five). Plot also the parameters 3 as you increase the
order of the polynomial. Comment your results.

Your code has to include a scaling/centering of the data (for example by
subtracting the mean value), and a split of the data in training and test data. For
this exercise you can either write your own code or use for example the function
for splitting training data provided by the library Scikit-Learn (make sure
you have installed it). This function is called train_test_split. You should
present a critical discussion of why and how you have scaled or not
scaled the data.

It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (eventually also an additional validation set). There
is no explicit recipe for how much data should be included as training data and
say test data. An accepted rule of thumb is to use approximately 2/3 to 4/5 of
the data as training data.

You can easily reuse the solutions to your exercises from week 35 and week
36. See also the lecture slides from week 35 and week 36.

S|

Part b): Adding Ridge regression for the Franke function. Write your
own code for the Ridge method, either using matrix inversion or the singular
value decomposition as done in the previous exercise. The lecture notes from
week 35 and 36 contain more information. Furthermore, the numerical exercise
from week 36 is something you can reuse here.

Perform the same analysis as you did in the previous exercise but now for
different values of A. Compare and analyze your results with those obtained in
part a) with the ordinary least squares method. Study the dependence on A.

Part c): Adding Lasso for the Franke function. This exercise is essentially
a repeat of the previous two ones, but now with Lasso regression. Write either
your own code (difficult and optional) or, in this case, you can also use the
functionalities of Scikit-Learn (recommended). Keep in mind that the library
Scikit-Learn excludes the intercept by default. Give a critical discussion of the
three methods and a judgement of which model fits the data best.

Part d): Paper and pencil part. This exercise deals with various mean
values and variances in linear regression method (here it may be useful to look
up chapter 3, equation (3.8) of Trevor Hastie, Robert Tibshirani, Jerome H.
Friedman, The Elements of Statistical Learning, Springer). The exercise is also
part of the weekly exercises for week 37.

https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

The assumption we have made is that there exists a continuous function f(x)
and a normal distributed error € ~ N (0, 0?) which describes our data

y=flz)+e

We then approximate this function f(x) with our model ¢ from the solution
of the linear regression equations (ordinary least squares OLS), that is our
function f is approximated by § where we minimized (y — ¢)?, with

§=X0.

The matrix X is the so-called design or feature matrix.
Show that the expectation value of y for a given element ¢

E(y;) = injﬁj = X, 0B,
J

and that its variance is
Var(y;) = o2

Hence, y; ~ N(X; . 3,0?), that is y follows a normal distribution with mean
value X 3 and variance o2. A
With the OLS expressions for the optimal parameters 3 show that

E(B) = B.
Show finally that the variance of 3 is
Var(B) = 02 (XTX)7 1.

We can use the last expression when we define a so-called confidence interval
for the parameters 8. A given parameter 3; is given by the diagonal matrix
element of the above matrix.

Part e): Bias-variance trade-off and resampling techniques. Our aim
here is to study the bias-variance trade-off by implementing the bootstrap
resampling technique. We will only use the simpler ordinary least squares
here.

With a code which does OLS and includes resampling techniques, we will
now discuss the bias-variance trade-off in the context of continuous predictions
such as regression. However, many of the intuitions and ideas discussed here also
carry over to classification tasks and basically all Machine Learning algorithms.

Before you perform an analysis of the bias-variance trade-off on your test
data, make first a figure similar to Fig. 2.11 of Hastie, Tibshirani, and Friedman.
Figure 2.11 of this reference displays only the test and training MSEs. The test
MSE can be used to indicate possible regions of low/high bias and variance. You
will most likely not get an equally smooth curve!

With this result we move on to the bias-variance trade-off analysis.

Consider a dataset £ consisting of the data X, = {(y;,x;),j =0...n —1}.
As in part d), we assume that the true data is generated from a noisy model

y=fz)+e

Here € is normally distributed with mean zero and standard deviation 2.

In our derivation of the ordinary least squares method we defined then an
approximation to the function f in terms of the parameters 8 and the design
matrix X which embody our model, that is y = X 3.

The parameters B are in turn found by optimizing the mean squared error
via the so-called cost function

n—1
CX.B) = 1Y -5 =E[w- 97
i=0
Here the expected value E is the sample value.

Show that you can rewrite this in terms of a term which contains the variance
of the model itself (the so-called variance term), a term which measures the
deviation from the true data and the mean value of the model (the bias term)
and finally the variance of the noise. That is, show that

E [(y — 5)2] = Bias[g] + var[g] + o2,

with
Biaslg) = E (v - E[3))°],
and
var[j] = E [(g —E [g])ﬂ = % > (@ — E§))?

The answer to this exercise should be included in the theory part of the report.
This exercise is also part of the weekly exercises of week 38. Explain what the
terms mean and discuss their interpretations.
Perform then a bias-variance analysis of the Franke function by studying the
MSE value as function of the complexity of your model.
Discuss the bias and variance trade-off as function of your model complexity
(the degree of the polynomial) and the number of data points, and possibly also
your training and test data using the bootstrap resampling method. You can fol-
low the code example in the jupyter-book at https://compphysics.github.io/
MachineLearning/doc/LectureNotes/_build/html/chapter3.html#the-bias-variance-tradeoff.

Part f): Cross-validation as resampling techniques, adding more com-
plexity. The aim here is to write your own code for another widely popular
resampling technique, the so-called cross-validation method.

Implement the k-fold cross-validation algorithm (write your own code) and
evaluate again the MSE function resulting from the test folds. You can compare
your own code with that from Scikit-Learn if needed.

https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/chapter3.html#the-bias-variance-tradeoff
https://compphysics.github.io/MachineLearning/doc/LectureNotes/_build/html/chapter3.html#the-bias-variance-tradeoff

Compare the MSE you get from your cross-validation code with the one
you got from your bootstrap code. Comment your results. Try 5 — 10 folds.
You can also compare your own cross-validation code with the one provided by
Scikit-Learn.

In addition to using the ordinary least squares method, you should include
both Ridge and Lasso regression.

Part g): Analysis of real data. With our codes functioning and having
been tested properly on a simpler function we are now ready to look at real
data. We will essentially repeat in this exercise what was done in exercises a-f.
However, we need first to download the data and prepare properly the inputs
to our codes. We are going to download digital terrain data from the website
https://earthexplorer.usgs.gov/,

Or, if you prefer, we have placed selected datafiles at https://github.com/
CompPhysics/MachinelLearning/tree/master/doc/Projects/2023/Projectl/
DataFiles

In order to obtain data for a specific region, you need to register as a user
(free) at this website and then decide upon which area you want to fetch the
digital terrain data from. In order to be able to read the data properly, you
need to specify that the format should be SRTM Arc-Second Global and
download the data as a GeoTTIF file. The files are then stored in tif format
which can be imported into a Python program using

scipy.misc.imread

Here is a simple part of a Python code which reads and plots the data from
such files

import numpy as np

from imageio import imread

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

Load the terrain

terrainl = imread(’SRTM_data_Norway_1.tif’)
Show the terrain

plt.figure()

plt.title(’Terrain over Norway 1°)
plt.imshow(terrainl, cmap=’gray’)
plt.xlabel(°X’)

plt.ylabel(’Y?)

plt.show()

https://earthexplorer.usgs.gov/
https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects/2023/Project1/DataFiles
https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects/2023/Project1/DataFiles
https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects/2023/Project1/DataFiles

If you should have problems in downloading the digital terrain data, we
provide two examples under the data folder of project 1. One is from a region
close to Stavanger in Norway and the other Mgsvatn Austfjell, again in Norway.
Feel free to produce your own terrain data.

Alternatively, if you would like to use another data set, feel free to do so.
This could be data close to your reseach area or simply a data set you found
interesting. See for example kaggle.com for examples.

Our final part deals with the parameterization of your digital terrain data
(or your own data). We will apply all three methods for linear regression, the
same type (or higher order) of polynomial approximation and cross-validation
as resampling technique to evaluate which model fits the data best.

At the end, you should present a critical evaluation of your results and discuss
the applicability of these regression methods to the type of data presented here
(either the terrain data we propose or other data sets).

Background literature

1. For a discussion and derivation of the variances and mean squared errors
using linear regression, see the Lecture notes on ridge regression by Wessel
N. van Wieringen

2. The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to answer the various
questions when preparing your answers.

¢ Give a short description of the nature of the problem and the eventual
numerical methods you have used.

o Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

¢ Include the source code of your program. Comment your program properly.
You should have the code at your GitHub/GitLab link. You can also place
the code in an appendix of your report.

o If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

¢ Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

https://www.kaggle.com/datasets
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

o Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

o Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

e Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language
we prefer that you choose between C/C++, Fortran2008, Julia or Python. The
following prescription should be followed when preparing the report:

e Use Canvas to hand in your projects, log in at https://www.uio.no/
english/services/it/education/canvas/ with your normal UiO user-
name and password.

o Upload only the report file or the link to your GitHub/GitLab or similar
typo of repos! For the source code file(s) you have developed please provide
us with your link to your GitHub/GitLab or similar domain. The report
file should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them.

o In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

https://www.uio.no/english/services/it/education/canvas/
https://www.uio.no/english/services/it/education/canvas/

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
o Scikit-learn,
o Tensorflow,
e PyTorch and
o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

10

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

