Project 3 on Machine Learning, deadline
December 18 (midnight), 2023

Data Analysis and Machine Learning FYS-STK3155/FYS4155

Department of Physics, University of Oslo, Norway

Nov 13, 2023

Paths for project 3

Defining the data sets to analyze yourself

For project 3, you can propose own data sets that relate to your research interests
or just use existing data sets from say

1. Kaggle

2. The University of California at Irvine (UCI) with its machine learning
repository.

3. Or other sources.

The approach to the analysis of these new data sets should follow to a large
extent what you did in projects 1 and 2. That is:

1. Whether you end up with a regression or a classification problem, you
should employ at least two of the methods we have discussed among linear
regression (including Ridge and Lasso), Logistic Regression, Neu-
ral Networks, Convolution Neural Networks, Recurrent Neural
Networks, and Decision Trees, Random Forests, Bagging and
Boosting.

Feel also free to use support vector machines, k-means and principal components
analysis, although the latter have not been covered during the lectures. This
material can be found in the lecture notes.

You could for example explore all of the approaches from decision trees, via
bagging and voting classifiers, to random forests, boosting and finally XGboost.
If you wish to venture into convolutional neural networks or recurrent
neural networks, or extensions of neural networkds, feel free to do so. You
can also study unsupervised methods, although we in this course have mainly
paid attention to supervised learning.

For Boosting, feel also free to write your own codes.

© 1999-2023, "Data Analysis and Machine Learning
FYS-STK3155/FYS4155":"http://www.uio.no/studier /emner/matnat/fys/FYS3155/index-
eng.html". Released under CC Attribution-NonCommercial 4.0 license

http://www.uio.no/studier/emner/matnat/fys/FYS3155/index-eng.html
https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

1. For project 3, you should feel free to use your own codes from projects 1 and

2, eventually write your own for Decision trees/random forests/bagging/boosting’

or use the available functionality of Scikit-Learn, Tensorflow, PyTorch
ete.

2. The estimates you used and tested in projects 1 and 2 should also be
included, that is the R2-score, MSE, confusion matrix, accuracy score,
information gain, ROC and Cumulative gains curves and other, cross-
validation and/or bootstrap if these are relevant.

3. Similarly, feel free to explore various activations functions in deep learning
and various approachs to stochastic gradient descent approaches.

4. If possible, you should link the data sets with exisiting research and analyses
thereof. Scientific articles which have used Machine Learning algorithms
to analyze the data are highly welcome. Perhaps you can improve previous
analyses and even publish a new article?

5. A critical assessment of the methods with ditto perspectives and recom-
mendations is also something you need to include.

All in all, the report should follow the same pattern as the two previous ones,
with abstract, introduction, methods, code, results, conclusions etc..

We propose also an alternative to the above. This is a project on using
machine learning methods (neural networks mainly) to the solution of ordinary
differential equations and partial differential equations, with a final twist on how
to diagonalize a symmetric matrix with neural networks.

This is a field with large scientific interest, spanning from studies of turbulence
in fluid mechanics and meteorology to the solution of quantum mechanical
systems. As reading background you can use the slides from week 43 and/or the
textbook by Yadav et al.

The basic structure of your project

Here follows a set up on how to structure your report and analyze the data you
have opted for.

Part a). The first part deals with structuring and reading the data, much
along the same lines as done in projects 1 and 2. Explain how the data are
produced and place them in a proper context.

Part b). You need to include at least two central algorithms, or as an al-
ternative explore methods from decisions tree to bagging, random forests and
boosting. Explain the basics of the methods you have chosen to work with. This
would be your theory part.

Part ¢). Then describe your algorithm and its implementation and tests you
have performed.

https://compphysics.github.io/MachineLearning/doc/pub/week43/html/week42.html
https://www.springer.com/gp/book/9789401798150

Part d). Then presents your results and findings, link with existing literature
and more.

Part e). Finally, here you should present a critical assessment of the methods
you have studied and link your results with the existing literature.

Solving partial differential equations with neural networks

For this variant of project 3, we will assume that you have some background
in the solution of partial differential equations using finite difference schemes.
We will study the solution of the diffusion equation in one dimension using a
standard explicit scheme and neural networks to solve the same equations.

For the explicit scheme, you can study for example chapter 10 of the lecture
notes in Computational Physics, FYS3150/4150 or alternative sources from
courses like MAT-MEK4270. For the solution of ordinary and partial differential
equations using neural networks, the lectures by included in the lectures of week
43 at this course are highly recommended.

For the machine learning part you can use your own code from project 2 or
the functionality of for example Tensorflow /Keras, PyTorch or other libraries
such Physics informed machine learning.

Alternative differential equations. Note that you can replace the one-
dimensional diffusion equation discussed below with other sets of either ordinary
differential equations or partial differential equations. Please discuss such a
change with us at the lab.

Part a), setting up the problem. The physical problem can be that of the
temperature gradient in a rod of length L = 1 at x = 0 and z = 1. We are
looking at a one-dimensional problem

O*u(x,t) Ou(x,t)
ox2 Ot

,t>0,2 €0, L)

or
Ugy = Ut,
with initial conditions, i.e., the conditions at ¢ = 0,
u(z,0) =sin(mz) O0<z <L,
with L = 1 the length of the z-region of interest. The boundary conditions are

u(0,t) =0 ¢t>0,

and

w(L,t)=0 t>0.

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-MEK4270/index.html
https://compphysics.github.io/MachineLearning/doc/pub/week42/html/week43.html
https://compphysics.github.io/MachineLearning/doc/pub/week42/html/week43.html
https://maziarraissi.github.io/PINNs/

The function u(z,t) can be the temperature gradient of a rod. As time increases,
the velocity approaches a linear variation with x.

We will limit ourselves to the so-called explicit forward Euler algorithm with
discretized versions of time given by a forward formula and a centered difference
in space resulting in

w u(x,t + At) —u(w,t) u(xg, t; + At) —u(x;, t))
;2 =

At At

and

u(x + Az, t) — 2u(z,t) + u(x — Az, t)
Ax? ’

uI‘T ~

or
w(x; + Az, t;) — 2u(x;, t;) + u(z; — Az, ty)
Ugy < .

Ax?

Write down the algorithm and the equations you need to implement. Find
also the analytical solution to the problem.

Part b). Implement the explicit scheme algorithm and perform tests of the
solution for Az = 1/10, Az = 1/100 using At as dictated by the stability limit
of the explicit scheme. The stability criterion for the explicit scheme requires
that At/Ax? < 1/2.

Study the solutions at two time points ¢; and ¢ where u(x,t1) is smooth
but still significantly curved and u(z,t2) is almost linear, close to the stationary
state.

Part ¢) Neural networks. Study now the lecture notes on solving ODEs
and PDEs with neural network and use either your own code from project 2
or the functionality of tensorflow/keras to solve the same equation as in part
b). Discuss your results and compare them with the standard explicit scheme.
Include also the analytical solution and compare with that.

Part d) Neural network complexity. Here we study the stability of the
results of the results as functions of the number of hidden nodes, layers and
activation functions for the hidden layers. Increase the number of hidden nodes
and layers in order to see if this improves your results. Try also different
activation functions for the hidden layers, such as the tanh, ReLU, and other
activation functions. Discuss your results.

Part e). Finally, present a critical assessment of the methods you have studied
and discuss the potential for the solving differential equations with machine
learning methods.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

Give a short description of the nature of the problem and the eventual
numerical methods you have used.

Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

Include the source code of your program. Comment your program properly.

If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

Try to give an interpretation of you results in your answers to the problems.

Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

Use Canvas to hand in your projects, log in at https://www.uio.no/
english/services/it/education/canvas/ with your normal UiO user-
name and password.

https://www.uio.no/english/services/it/education/canvas/
https://www.uio.no/english/services/it/education/canvas/

o Upload only the report file or the link to your GitHub/GitLab or similar
typo of repos! For the source code file(s) you have developed please provide
us with your link to your GitHub/GitLab or similar domain. The report
file should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them.

e In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/

Popular software packages written in Python for ML are
o Scikit-learn,
e Tensorflow,
e PyTorch and

o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

