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Infinite Matter studies
Bulk nucleonic matter is interesting for several reasons. The equation of state
(EoS) of neutron matter determines properties of supernova explosions, and of
neutron stars and it links the latter to neutron radii in atomic nuclei and the
symmetry energy . Similarly, the compressibility of nuclear matter is probed in
giant dipole excitations, and the symmetry energy of nuclear matter is related to
the difference between proton and neutron radii in atomic nuclei. The saturation
point of nuclear matter determines bulk properties of atomic nuclei, and is
therefore an important constraint for nuclear energy-density functionals and
mass models.

Many-body approaches to infinite matter. For an infinite homogeneous
system like nuclear matter or the electron gas, the one-particle wave functions
are given by plane wave functions normalized to a volume Ω for a quadratic box
with length L. The limit L→∞ is to be taken after we have computed various
expectation values. In our case we will however always deal with a fixed number
of particles and finite size effects become important.
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The single-particle energies for the three-dimensional electron gas are
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resulting in the magic numbers 2, 14, 38, 54, etc.
In general terms, our Hamiltonian contains at most a two-body interactions.

In second quantization, we can write our Hamiltonian as

Ĥ =
∑
pq

〈p|ĥ0|q〉a†paq + 1
4
∑
pqrs

〈pq|v|rs〉a†pa†qasar, (1)

where the operator ĥ0 denotes the single-particle Hamiltonian, and the elements
〈pq|v|rs〉 are the anti-symmetrized Coulomb interaction matrix elements. Normal-
ordering with respect to a reference state |Φ0〉 yields

Ĥ = E0 +
∑
pq

fpq{a†paq}+ 1
4
∑
pqrs

〈pq|v|rs〉{a†pa†qasar}, (2)

where E0 = 〈Φ0|Ĥ|Φ0〉 is the reference energy and we have introduced the
so-called Fock matrix element defined as

fpq = 〈p|ĥ0|q〉+
∑

i

〈pi|v|qi〉. (3)

The curly brackets in Eq. (2) indicate that the creation and annihilation operators
are normal ordered.

The unperturbed part of the Hamiltonian is defined as the sum over all the
single-particle operators ĥ0, resulting in
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∑
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We will throughout suppress, unless explicitely needed, all references to the
explicit quantum numbers kimsi

. The summation index i runs over all single-
hole states up to the Fermi level.

The general anti-symmetrized two-body interaction matrix element

〈pq|v|rs〉 = 〈kpmspkqmsq |v|krmsr ksmss〉,

is given by the following expression
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for the three-dimensional electron gas. The energy per electron computed with
the reference Slater determinant can then be written as (using hereafter only
atomic units, meaning that ~ = m = e = 1)
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for the three-dimensional electron gas. This will serve (with the addition of a
Yukawa term) as the first benchmark in setting up a program for doing Coupled-
cluster theories. The electron gas provides a very useful benchmark at the
Hartree-Fock level since it provides an analytical solution for the Hartree-Fock
energy single-particle energy and the total energy per particle.

In addition to the above studies of the electron gas, it is important to study
properly the boundary conditions as well.

The next step is to perform a coupled-cluster calculations at the coupled-
cluster with doubles excitations, the so-called CCD approach, for the electron
gas. The next step is to include triples correlations and perform full doubles and
triples calculations (CCDT) for neutron matter using a simplified model for the
nuclear force, the so-called Minnesota potential. This allows for a benchmark
of codes to infinite nuclear matter. The next step is to include realistic models
for the nuclear forces and study the EoS for pure neutron matter, asymmetric
nuclear matter (for different proton fractions) and symmetric nuclear matter.
With this one can study β-stable neutron star matter and extract important
information about the symmetry energy in infinite matter and the composition
of a neutron star. The resulting effective interactions at the two-body level
can in turn, if time allows, be included in the study of neutrino emissivities in
dense matter. The processes of most interest are the so-called modified URCA
prosesses

n+ n→ p+ n+ e+ νe, p+ n+ e→ n+ n+ νe. (4)

These reactions correspond to the processes for β-decay and electron capture
with a bystanding neutron. The calculation of neutrino spectra has important
consequences for our basic understanding on how neutron stars cool, the synthesis
of the elements and neutrino oscillations in dense matter.
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