
Bayesian Machine Learning

Master of Science thesis project

Dec 4, 2019

Bayesian Machine Learning, Level Densities and Probabil-
ity
The level density ρ(E) as function of energy E plays a central in many physics
applications, ranging from the modeling of nuclear astrophysics reactions central
to the synthesis of the elements to the classification and understanding of phases
and phase transition in for example condensed matter physics.

In statistical physics it defines the thermodynamical potential in the micro-
canonical ensemble and thereby the entropy. For a finite isolated many-body
system (for example an atomic nucleus), the correct thermodynamical ensemble
is the microcanonical one. In this ensemble, the nuclear level density, the density
of eigenstates of a nucleus at a given excitation energy, is the important quantity
that may be used to describe thermodynamic properties of nuclei, such as the
nuclear entropy, specific heat, and temperature. Bethe first described the level
density using a non-interacting fermi gas model for the nucleons. Modifications
to this picture, such as the back-shifted fermi gas which includes pair and shell
effects not present in Bethe’s original formulation, are in wide use. The level
density ρ defines the partition function for the microcanonical ensemble and
the entropy through the well-known relation S(E) = kBln(ρ(E)). Here kB is
Boltzmann’s constant and E is the energy. In the microcanonical ensemble,
we could then extract expectation values for thermodynamical quantities like
temperature T , or the heat capacity C. The temperature in the microcanonical
ensemble is defined as

〈T 〉 =
(
dS(E)
dE

)−1
. (1)

It is a function of the excitation energy, which is the relevant variable of
interest in the microcanonical ensemble. However, since the extracted level
density is given only at discrete energies, the calculation of expectation values
like T , involving derivatives of the partition function, is not reliable unless a
strong smoothing over energies is performed. Another possibility is to perform
a transformation to the canonical ensemble. The partition function for the



canonical ensemble is related to that of the microcanonical ensemble through a
Laplace transform

Z(β) =
∫ ∞

0
dEρ(E) exp (−βE). (2)

Here we have defined β = 1/kBT . Since we will deal with discrete energies,
the Laplace transform of Eq. (2) takes the form

Z(β) =
∑
E

∆Eρ(E) exp (−βE), (3)

where ∆E is the energy bin used. With Z we can evaluate the entropy in
the canonical ensemble using the definition of the free energy

F (T ) = −kBT lnZ(T ) = 〈E(T )〉 − TS(T ). (4)

Note that the temperature T is now the variable of interest and the energy E
is given by the expectation value 〈E〉 as a function of T . Similarly, the entropy
S is also a function of T . For finite systems, fluctuations in various expectation
values can be large. In nuclear and solid state physics, thermal properties have
mainly been studied in the canonical and grand-canonical ensemble. In order to
obtain the level density, the inverse transformation

ρ(E) = 1
2πi

∫ i∞

−i∞
dβZ(β) exp (βE), (5)

is normally used. Compared with Eq. (2), this transformation is rather
difficult to perform since the integrand exp (βE + lnZ(β)) is a rapidly varying
function of the integration parameter. In order to obtain the density of states,
approximations like the saddle-point method, viz., an expansion of the exponent
in the integrand to second order around the equilibrium point and subsequent
integration, have been used widely.

For the ideal Fermi gas, this gives the following density of states

ρideal(E) = exp (2
√
aE)

E
√

48
, (6)

where a in nuclear physics is a factor typically of the order a = A/8 with
dimension MeV−1, A being the mass number of a given nucleus.

To obtain an experimental level density is a rather hard task. Ideally, we
would like an experiment to provide us with the level density as a function of
excitation energy and thereby the full partition function for the microcanonical
ensemble. It is only rather recently that experimentalists have been able to
develop methods for extracting level densities at low spin from measured γ-
spectra. These measurements were performed at the Oslo Cyclotron Laboratory.

The Oslo cyclotron group has developed a method to extract nuclear level
densities at low spin from measured γ-ray spectra. The main advantage of
utilizing γ-rays as a probe for level density is that the nuclear system is likely
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thermalized prior to the γ-emission. In addition, the method allows for the
simultaneous extraction of level density and γ-strength function over a wide
energy region.

With the level density we can in turn define a probability distribution function
(PDF) in say for example the canonical ensemble. Alternatively, if we have the
PDF we can find the level density. Having a PDF allows us also to quantify
in a rigorous way statistical confidence intervals, statistical errors and other
statistical quantities with far reaching consequences for our understanding of
a specific physics problem. In experiments we do however normally not have
the above quantities. This means that we need to translate experimental results
via some theoretical modeling into suitable quantities that can be used to define
either a PDF or the density of states.

A typical situation which occurs in for example nuclear reaction experiments
performed at the cyclotron of the University of Oslo, is that one can extract the
number of counts as function of the excitation energy Ex of a given nucleus and
the resulting gamma energy Eγ . This quantity, labelled N(Ex, Eγ) can in turn
be used to define either a PDF or the density of state.

In this project we will use Bayesian statistics and Bayesian machine learning
to extract first the PDF based on the above experimental data in order to define
a posterior distribution P (Ex|Eγ), that is the likelihood of being in a state with
energy Ex given a certain γ-energy. This quantity will in turn be used to identify
a density of states. A short note on Bayes’ rule and some other elements of
statistics are included at the end here.

Thesis Projects
The aim of this thesis project is to employ Bayesian machine learning to define a
PDF, either from experiment or from theoretical simulations. Eventually, based
on the PDF, one can attempt to define the level density ρ(E). The first step
is to use an already available model for extracting the level density from exact
diagonalization. This model, a so-called simplified pairing model is described
in detail in the references below. The data from these theoretical calculations
will then be used to define a posterior distribution based on a Bayesian machine
learning approach.

Specific tasks and milestones. The project can easily be split into sev-
eral parts and form the basis for collaborations among several students. The
milestones are as follows

1. Spring 2020: Use the simple pairing model to generate training data on
the density of states from numerical diagonalization (existing code) and
develop a Bayesian Neural Network code and algorithm to extract a PDF.
This PDF expresses the likelihood for finding the system at a given energy.

2. Fall 2020: Based on the experience with the theoretical model, the next
step is to use experimental data from the Oslo cyclotron (see discussions
above) in order to extract P (Ex|Eγ) using Bayesian Machine Learning.
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3. Spring 2021: Analysis of results and determination of level density. Finalize
thesis.

The thesis is expected to be handed in May/June 2021.
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Appendix: Brief note on Bayesian Statistics. The aim is to assess hy-
potheses by calculating their probabilities p(Hi| . . .) conditional on known and/or
presumed information using the rules of probability theory. Bayes’ theorem is
based on the standard Probability Theory Axioms:

1. Product (AND) rule : p(A,B|I) = p(A|I)p(B|A, I) = p(B|I)p(A|B, I).
Should read p(A,B|I) as the probability for propositions A AND B being
true given that I is true.

2. Sum (OR) rule: p(A+B|I) = p(A|I) + p(B|I)− p(A,B|I). p(A+B|I) is
the probability that proposition A OR B is true given that I is true.

3. Normalization: p(A|I) + p(Ā|I) = 1. Ā denotes the proposition that A is
false.

Bayes’ theorem follows directly from the product rule

p(A|B, I) = p(B|A, I)p(A|I)
p(B|I) .

The importance of this property to data analysis becomes apparent if we replace
A and B by hypothesis(H) and data(D):

p(H|D, I) = p(D|H, I)p(H|I)
p(D|I) . (7)

The power of Bayes’ theorem lies in the fact that it relates the quantity of
interest, the probability that the hypothesis is true given the data, to the term
we have a better chance of being able to assign, the probability that we would
have observed the measured data if the hypothesis was true.

The various terms in Bayes’ theorem have formal names.

• The quantity on the far right, p(H|I), is called the prior probability; it
represents our state of knowledge (or ignorance) about the truth of the
hypothesis before we have analysed the current data.
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• This is modified by the experimental measurements through p(D|H, I),
the likelihood function,

• The denominator p(D|I) is called the evidence. It does not depend on the
hypothesis and can be regarded as a normalization constant.

• Together, these yield the posterior probability, p(H|D, I), representing our
state of knowledge about the truth of the hypothesis in the light of the
data.
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