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Machine Learning and the Quantum Many-body Problem
Solving quantum mechanical problems for atoms, molecules, materials, and
interfaces is of fundamental importance to a large number of disciplines including
physics, chemistry, and materials science. Since the early development of quan-
tum mechanics, it has been noted, by Dirac among others, that ...approximate,
practical methods of applying quantum mechanics should be developed, which can
lead to an explanation of the main features of complex atomic systems without
too much computation.

Historically, this has meant invoking approximate forms of the underlying
interactions (mean field, tight binding, etc.) or relying on phenomenological fits
to a limited number of either experimental observations or theoretical results
(e.g., force fields). The development of feature-based models is not new in
the scientific literature. Indeed, prior even to the acceptance of the atomic
hypothesis, van der Waals argued for an equation of state based on two physical
features. Machine learning (i.e., fitting parameters within a model) has been
used in physics and chemistry since the dawn of the computer age. The term
machine learning is new; the approach is not.

More recently, high-level ab initio calculations have been used to train artificial
neural networks to fit high-dimensional interaction models and to make informed
predictions about material properties.

Machine learning can also be used to accelerate or bypass some of the heavy
machinery of the ab initio method itself. In the work of Snyder et al, the authors
replaced the kinetic energy functional within density-functional theory with a
machine-learned one, learned the mappings from potential to electron density
and from charge density to kinetic energy, respectively.

Thesis Projects
Here we present possible theses paths based on Machine Learning and studies of
quantum mechanical systems. Possible systems are fermion or boson systems
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where the quantum mechanical particles are confined to move in various types
of traps. A typical example which one could start with is to study a system
of one and two electrons in two or three dimensions whose motion is confined
by a harmonic oscillator potential. This system has, for one and two electrons
only in two or three dimensions, analytical solutions for the energy and the state
functions.

Strongly confined electrons offer a wide variety of complex and subtle phe-
nomena which pose severe challenges to existing many-body methods. Quantum
dots in particular, that is, electrons confined in semiconducting heterostructures,
exhibit, due to their small size, discrete quantum levels. The ground states of, for
example, circular dots show similar shell structures and magic numbers as seen
for atoms and nuclei. These structures are particularly evident in measurements
of the change in electrochemical potential due to the addition of one extra
electron.

Small confined systems, such as quantum dots (QD), have become very pop-
ular for experimental study. Beyond their possible relevance for nanotechnology,
they are highly tunable in experiments and introduce level quantization and
quantum interference in a controlled way.

A proper theoretical understanding of such systems requires the development
of appropriate and reliable theoretical few- and many-body methods. Further-
more, for quantum dots with more than two electrons and/or specific values
of the external fields, this implies the development of few- and many-body
methods where uncertainty quantifications are provided. For most methods, this
means providing an estimate of the error due to the truncation made in the
single-particle basis and the truncation made in limiting the number of possible
excitations. For systems with more than three or four electrons, ab initio
methods that have been employed in studies of quantum dots are variational and
diffusion Monte Carlo, path integral approaches, large-scale diagonalization (full
configuration interaction and to a more limited extent coupled-cluster theory.
Exact diagonalization studies are accurate for a very small number of electrons,
but the number of basis functions needed to obtain a given accuracy and the
computational cost grow very rapidly with electron number. In practice they
have been used for up to eight electrons, but the accuracy is very limited for
all except N ≤ 3 . Monte Carlo methods have been applied up to N ∼ 100
electrons. Diffusion Monte Carlo, with statistical and systematic errors, pro-
vide, in principle, exact benchmark solutions to various properties of quantum
dots. However, the computations start becoming rather time-consuming for
larger systems. Mean field methods like various Hartree-Fock approaches and/or
current density functional methods give results that are satisfactory for a qual-
itative understanding of some systematic properties. However, comparisons
with exact results show discrepancies in the energies that are substantial on
the scale of energy differences. The above-mentioned many-body methods all
experience what is the loosely called the curse of dimensionality. This means
that the increased number of degrees freedom hinders the application of most
first principle methods. As an example, for direct diagonalization methods,
Hamiltonian matrices of dimensionalities larger than ten billion basis states,
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are simply computationally intractable. Such a dimensionality translates into
few interacting particles only. For larger systems one is limited to much more
approximative methods. Reecent approaches in Machine Learning as well as
in quantum computing, hold promise however to circumvent partly the above
problems with increasing degrees of freedom. The aim of these thesis topics aim
thus at exploring various Machine Learning approaches.

Specific tasks and milestones. The specific task here is to implement and
study the recently developed deep learning algorithms for solving quantum
mechanical many-particle problems. The results can be easily compared with
exisiting standard many-particle codes developed by former students at the
Computational Physics group. These codes will serve as useful comparisons in
order to gauge the appropriateness of recent Machine Learning approaches to
quantum mechanical problems.

Three recent articles (see below) have shown the reliability of these methods
and the aim is to study and implement these algorithms to first a system of
one electron moving in a confining potential. Thereafter we switch to the
interacting two-electron, many-electron and many-boson problems and apply
these algorithms. One can also study other machine learning algorithms.

The projects can easily be split into several parts and form the basis for
collaborations among several students. The milestones are as follows

1. Spring 2020: Based on the works of Carleo and Troyer and Mills et al solve
the non-interacting case for a system of N non-interacting bosons.

2. Fall 2020: Extend the project to include fermions and solve the one- and
two-electron problem for electrons confined to move in two- and three-
dimensional harmonic oscillator traps.

3. Spring 2021: Extend to systems of many interacting bosons and fermions.

The thesis is expected to be handed in May/June 2021.

References. Highly relevant articles for possible thesis projects are:

1. Carleo and Troyer

2. Mills et al

3. Pfau et al, Ab-Initio Solution of the Many-Electron Schrödinger Equation
with Deep Neural Networks

4. See also Recent advances and applications of machine learning in solid-state
materials science, by Jonathan Schmidt et al
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