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Machine Learning and the Quantum Many-body Problem
The aim of this thesis project is to employ and develop Recurrent neural networks
and similar deep learning algorithms for studies of many interacting particles.
The thesis project can be combined with the inclusion of more traditional many-
body methods like coupled cluster theory, large-scale eigenvalue methods and
in-medium similarity renormalization group theory.

Typical systems which can be studied are strongly confined electrons. These
systems offer a wide variety of complex and subtle phenomena which pose severe
challenges to existing many-body methods. Quantum dots in particular, that is,
electrons confined in semiconducting heterostructures, exhibit, due to their small
size, discrete quantum levels. The ground states of, for example, circular dots
show similar shell structures and magic numbers as seen for atoms and nuclei.
Beyond their possible relevance for nanotechnology, they are highly tunable in
experiments and introduce level quantization and quantum interference in a
controlled way. Other systems of great interest (and which are similar in terms
of interaction models) is the infinite homogeneous elctron gas in two and three
dimensions.

A proper theoretical understanding of such systems requires the development
of appropriate and reliable theoretical few- and many-body methods. For sys-
tems with more than three or four electrons, ab initio methods that have been
employed in studies of quantum dots are variational and diffusion Monte Carlo,
path integral approaches, large-scale diagonalization (full configuration interac-
tion and to a more limited extent coupled-cluster theory. Exact diagonalization
studies are accurate for a very small number of electrons, but the number of
basis functions needed to obtain a given accuracy and the computational cost
grow very rapidly with electron number. In practice they have been used for up
to eight electrons, but the accuracy is very limited for all except N ≤ 3. Monte



Carlo methods have been applied up to N ∼ 100 electrons. Diffusion Monte
Carlo, with pertinent statistical errors, provide, in principle, exact benchmark
solutions to various properties of quantum dots. However, the computations start
becoming rather time-consuming for larger systems. Mean field methods like
various Hartree-Fock approaches and/or current density functional methods give
results that are satisfactory for a qualitative understanding of some systematic
properties.

Other systems of interest are studies of infinite systems such as the homo-
geneous electron gas and/or infinite nuclear matter. The latter is a widely
popular many-body system, with far ranging consequences and interests, from
the structure of neutron stars to a deeper understanding of neutrino oscillations.

The above-mentioned many-body methods all experience what is the loosely
called the curse of dimensionality. This means that the increased number
of degrees freedom hinders the application of most first principle methods.
As an example, for direct diagonalization methods, Hamiltonian matrices of
dimensionalities larger than ten billion basis states, are simply computationally
intractable. Such a dimensionality translates into few interacting particles only.
For larger systems one is limited to much more approximative methods. Reecent
approaches in Machine Learning as well as in quantum computing, hold promise
however to circumvent partly the above problems with increasing degrees of
freedom. The aim of this thesis project is thus to explore various Machine
Learning approaches.

Specific tasks and milestones. The specific task here is to implement and
study recently developed deep learning algorithms based on neural networks
and in particular on recurrent neural networks for solving quantum mechanical
many-particle problems. The results can be easily compared with exisiting stan-
dard many-particle codes developed by former students at the Computational
Physics group. These codes will serve as useful comparisons in order to gauge the
appropriateness of recent Machine Learning approaches to quantum mechanical
problems. The aim here is to use recurrent neural networks (RNNs) to study
quantum mechanical many-body methods like the family of similarity renormal-
ization group methods. This method is a rewrite of many-body equations in
terms of coupled ordinary differential equations, see chapter 10 of Lecture Notes
in Physics vol. 936.

The projects can easily be split into several parts and form the basis for
collaborations among several students. The milestones are as follows:

1. Spring 2020: Develop a code for solving the Schroedinger equation for one
and two particles in 1, 2 and 3 dimensions using recurrent neural networks
and the Similarity Renormalization Group method. Compare the results
to exact numerical diagonalization of the same systems.

2. Fall 2020: Extend the project to include the in-medium similarity renor-
malization group method and develop an RNN based code for handling
many-particle systems.
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3. Spring 2021: The choice of systems here is optional. Examples could be
the quantum dot systems mentioned above or the homogenoeus electron
gas. Such calculations have never been performed before and can lay the
foundaton for several scientific articles.

The thesis is expected to be handed in May/June 2021.

References. Highly relevant articles for possible thesis projects are:

1. Hergert et al, chapter 10 in particular

2. Mills et al

3. Pfau et al, Ab-Initio Solution of the Many-Electron Schrödinger Equation
with Deep Neural Networks

4. See also Recent advances and applications of machine learning in solid-state
materials science, by Jonathan Schmidt et al
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