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Ridge and LASSO Regression
Let us remind ourselves about the expression for the standard Mean Squared
Error (MSE) which we used to define our cost function and the equations for
the ordinary least squares (OLS) method, that is our optimization problem is

min
β∈Rp

1
n

{
(y − Xβ)T (y − Xβ)

}
.

or we can state it as

min
β∈Rp

1
n

n−1∑
i=0

(yi − ỹi)2 = 1
n

||y − Xβ||22,

where we have used the definition of a norm-2 vector, that is

||x||2 =
√∑

i

x2
i .
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From OLS to Ridge and Lasso
By minimizing the above equation with respect to the parameters β we could
then obtain an analytical expression for the parameters β. We can add a
regularization parameter λ by defining a new cost function to be optimized, that
is

min
β∈Rp

1
n

||y − Xβ||22 + λ||β||22

which leads to the Ridge regression minimization problem where we require
that ||β||22 ≤ t, where t is a finite number larger than zero. By defining

C(X,β) = 1
n

||y − Xβ||22 + λ||β||1,

we have a new optimization equation

min
β∈Rp

1
n

||y − Xβ||22 + λ||β||1

which leads to Lasso regression. Lasso stands for least absolute shrinkage and
selection operator.

Here we have defined the norm-1 as

||x||1 =
∑

i

|xi|.

Deriving the Ridge Regression Equations
Using the matrix-vector expression for Ridge regression and dropping the pa-
rameter 1/n in front of the standard means squared error equation, we have

C(X,β) =
{

(y − Xβ)T (y − Xβ)
}

+ λβTβ,

and taking the derivatives with respect to β we obtain then a slightly modified
matrix inversion problem which for finite values of λ does not suffer from
singularity problems. We obtain the optimal parameters

β̂Ridge =
(
XTX + λI

)−1
XTy,

with I being a p × p identity matrix with the constraint that

p−1∑
i=0

β2
i ≤ t,

with t a finite positive number.
When we compare this with the ordinary least squares result we have

β̂OLS =
(
XTX

)−1
XTy,
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which can lead to singular matrices. However, with the SVD, we can always
compute the inverse of the matrix XTX.

We see that Ridge regression is nothing but the standard OLS with a modified
diagonal term added to XTX. The consequences, in particular for our discussion
of the bias-variance tradeoff are rather interesting. We will see that for specific
values of λ, we may even reduce the variance of the optimal parameters β. These
topics and other related ones, will be discussed after the more linear algebra
oriented analysis here.

SVD analysis
Using our insights about the SVD of the design matrix X We have already
analyzed the OLS solutions in terms of the eigenvectors (the columns) of the
right singular value matrix U as

ỹOLS = Xβ = UUTy.

For Ridge regression this becomes

ỹRidge = XβRidge = UΣV T
(
V Σ2V T + λI

)−1 (UΣV T )Ty =
p−1∑
j=0

uju
T
j

σ2
j

σ2
j + λ

y,

with the vectors uj being the columns of U from the SVD of the matrix X.

Interpreting the Ridge results
Since λ ≥ 0, it means that compared to OLS, we have

σ2
j

σ2
j + λ

≤ 1.

Ridge regression finds the coordinates of y with respect to the orthonormal
basis U , it then shrinks the coordinates by σ2

j

σ2
j

+λ
. Recall that the SVD has

eigenvalues ordered in a descending way, that is σi ≥ σi+1.
For small eigenvalues σi it means that their contributions become less impor-

tant, a fact which can be used to reduce the number of degrees of freedom. More
about this when we have covered the material on a statistical interpretation of
various linear regression methods.

More interpretations
For the sake of simplicity, let us assume that the design matrix is orthonormal,
that is

XTX = (XTX)−1 = I.
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In this case the standard OLS results in

βOLS = XTy =
p−1∑
i=0

uju
T
j y,

and

βRidge = (I + λI)−1
XTy = (1 + λ)−1

βOLS,

that is the Ridge estimator scales the OLS estimator by the inverse of a factor
1 + λ, and the Ridge estimator converges to zero when the hyperparameter goes
to infinity.

We will come back to more interpreations after we have gone through some
of the statistical analysis part.

For more discussions of Ridge and Lasso regression, Wessel van Wierin-
gen’s article is highly recommended. Similarly, Mehta et al’s article is also
recommended.

Deriving the Lasso Regression Equations
Using the matrix-vector expression for Lasso regression and dropping the pa-
rameter 1/n in front of the standard mean squared error equation, we have the
following cost function

C(X,β) =
{

(y − Xβ)T (y − Xβ)
}

+ λ||β||1,

Taking the derivative with respect to β and recalling that the derivative of
the absolute value is (we drop the boldfaced vector symbol for simplicty)

d|β|
dβ

= sgn(β) =
{

1 β > 0
−1 β < 0,

we have that the derivative of the cost function is

∂C(X,β)
∂β

= −2XT (y − Xβ) + λsgn(β) = 0,

and reordering we have

XTXβ + λsgn(β) = 2XTy.

This equation does not lead to a nice analytical equation as in Ridge regression
or ordinary least squares. This equation can however be solved by using standard
convex optimization algorithms using for example the Python package CVXOPT.
We will discuss this later.
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Simple example to illustrate Ordinary Least Squares, Ridge
and Lasso Regression
Let us assume that our design matrix is given by unit (identity) matrix, that
is a square diagonal matrix with ones only along the diagonal. In this case we
have an equal number of rows and columns n = p.

Our model approximation is just ỹ = β and the mean squared error and
thereby the cost function for ordinary least sqquares (OLS) is then (we drop the
term 1/n)

C(β) =
p−1∑
i=0

(yi − βi)2,

and minimizing we have that
β̂OLS

i = yi.

Ridge Regression
For Ridge regression our cost function is

C(β) =
p−1∑
i=0

(yi − βi)2 + λ

p−1∑
i=0

β2
i ,

and minimizing we have that

β̂Ridge
i = yi

1 + λ
.

Lasso Regression
For Lasso regression our cost function is

C(β) =
p−1∑
i=0

(yi − βi)2 + λ

p−1∑
i=0

|βi| =
p−1∑
i=0

(yi − βi)2 + λ

p−1∑
i=0

√
β2

i ,

and minimizing we have that

−2
p−1∑
i=0

(yi − βi) + λ

p−1∑
i=0

(βi)
|βi|

= 0,

which leads to

β̂Lasso
i =


yi − λ

2 if yi > λ
2

yi + λ
2 if yi < − λ

2
0 if |yi| ≤ λ

2

.

Plotting these results (figure in handwritten notes for week 36) shows clearly
that Lasso regression suppresses (sets to zero) values of βi for specific values of
λ. Ridge regression reduces on the other hand the values of βi as function of λ.
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Yet another Example
Let us assume we have a data set with outputs/targets given by the vector

y =

4
2
3

 ,

and our inputs as a 3 × 2 design matrix

X =

2 0
0 1
0 0

 ,

meaning that we have two features and two unknown parameters β0 and β1 to
be determined either by ordinary least squares, Ridge or Lasso regression.

The OLS case
For ordinary least squares (OLS) we know that the optimal solution is

β̂OLS =
(
XTX

)−1
XTy.

Inserting the above values we obtain that

β̂OLS =
[
2
2

]
,

The code which implements this simpler case is presented after the discussion
of Ridge and Lasso.

The Ridge case
For Ridge regression we have

β̂Ridge =
(
XTX + λI

)−1
XTy.

Inserting the above values we obtain that

β̂Ridge =
[ 8

4+λ
2

1+λ

]
,

There is normally a constraint on the value of ||β||2 via the parameter λ. Let
us for simplicity assume that β2

0 + β2
1 = 1 as constraint. This will allow us to

find an expression for the optimal values of β and λ.
To see this, let us write the cost function for Ridge regression.
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Writing the Cost Function
We define the MSE without the 1/n factor and have then, using that

Xβ =

2β0
β1
0

 ,

C(β) = (4 − 2β0)2 + (2 − β1)2 + λ(β2
0 + β2

1),

and taking the derivative with respect to β0 we get

β0 = 8
4 + λ

,

and for β1 we obtain
β1 = 2

1 + λ
,

Using the constraint for β2
0 + β2

1 = 1 we can constrain λ by solving(
8

4 + λ

)2
+
(

2
1 + λ

)2
= 1,

which gives λ = 4.571 and β0 = 0.933 and β1 = 0.359.

Lasso case
For Lasso we need now, keeping a constraint on |β0| + |β1| = 1, to take the
derivative of the absolute values of β0 and β1. This gives us the following
derivatives of the cost function

C(β) = (4 − 2β0)2 + (2 − β1)2 + λ(|β0| + |β1|),

∂C(β)
∂β0

= −4(4 − 2β0) + λsgn(β0) = 0,

and
∂C(β)

∂β1
= −2(2 − β1) + λsgn(β1) = 0.

We have now four cases to solve besides the trivial cases β0 and/or β1 are zero,
namely

1. β0 > 0 and β1 > 0,

2. β0 > 0 and β1 < 0,

3. β0 < 0 and β1 > 0,

4. β0 < 0 and β1 < 0.
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The first Case
If we consider the first case, we have then

−4(4 − 2β0) + λ = 0,

and
−2(2 − β1) + λ = 0.

which yields

β0 = 16 + λ

8 ,

and
β1 = 4 + λ

2 .

Using the constraint on β0 and β1 we can then find the optimal value of λ
for the different cases. We leave this as an exercise to you.

Simple code for solving the above problem
Here we set up the OLS, Ridge and Lasso functionality in order to study the
above example. Note that here we have opted for a set of values of λ, meaning
that we need to perform a search in order to find the optimal values.

First we study and compare the OLS and Ridge results. The next code
compares all three methods.

import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.

X = np.array( [ [ 2, 0], [0, 1], [0,0]])
y = np.array( [4, 2, 3])

# matrix inversion to find beta
OLSbeta = np.linalg.inv(X.T @ X) @ X.T @ y
print(OLSbeta)
# and then make the prediction
ytildeOLS = X @ OLSbeta
print("Training MSE for OLS")
print(MSE(y,ytildeOLS))
ypredictOLS = X @ OLSbeta
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# Repeat now for Ridge regression and various values of the regularization parameter
I = np.eye(2,2)
# Decide which values of lambda to use
nlambdas = 100
MSEPredict = np.zeros(nlambdas)
lambdas = np.logspace(-4, 4, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
Ridgebeta = np.linalg.inv(X.T @ X+lmb*I) @ X.T @ y

# print(Ridgebeta)
# and then make the prediction
ypredictRidge = X @ Ridgebeta
MSEPredict[i] = MSE(y,ypredictRidge)

# print(MSEPredict[i])
# Now plot the results

plt.figure()
plt.plot(np.log10(lambdas), MSEPredict, 'r--', label = 'MSE Ridge Train')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

We see here that we reach a plateau. What is actually happening?

With Lasso Regression
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.

X = np.array( [ [ 2, 0], [0, 1], [0,0]])
y = np.array( [4, 2, 3])

# matrix inversion to find beta
OLSbeta = np.linalg.inv(X.T @ X) @ X.T @ y
print(OLSbeta)
# and then make the prediction
ytildeOLS = X @ OLSbeta
print("Training MSE for OLS")
print(MSE(y,ytildeOLS))
ypredictOLS = X @ OLSbeta

# Repeat now for Ridge regression and various values of the regularization parameter
I = np.eye(2,2)
# Decide which values of lambda to use
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nlambdas = 100
MSERidgePredict = np.zeros(nlambdas)
MSELassoPredict = np.zeros(nlambdas)
lambdas = np.logspace(-4, 4, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
Ridgebeta = np.linalg.inv(X.T @ X+lmb*I) @ X.T @ y
print(Ridgebeta)
# and then make the prediction
ypredictRidge = X @ Ridgebeta
MSERidgePredict[i] = MSE(y,ypredictRidge)
RegLasso = linear_model.Lasso(lmb)
RegLasso.fit(X,y)
ypredictLasso = RegLasso.predict(X)
print(RegLasso.coef_)
MSELassoPredict[i] = MSE(y,ypredictLasso)

# Now plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSERidgePredict, 'r--', label = 'MSE Ridge Train')
plt.plot(np.log10(lambdas), MSELassoPredict, 'r--', label = 'MSE Lasso Train')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

Another Example, now with a polynomial fit
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import linear_model

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.
np.random.seed(3155)

x = np.random.rand(100)
y = 2.0+5*x*x+0.1*np.random.randn(100)

# number of features p (here degree of polynomial
p = 3
# The design matrix now as function of a given polynomial
X = np.zeros((len(x),p))
X[:,0] = 1.0
X[:,1] = x
X[:,2] = x*x
# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
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# matrix inversion to find beta
OLSbeta = np.linalg.inv(X_train.T @ X_train) @ X_train.T @ y_train
print(OLSbeta)
# and then make the prediction
ytildeOLS = X_train @ OLSbeta
print("Training MSE for OLS")
print(MSE(y_train,ytildeOLS))
ypredictOLS = X_test @ OLSbeta
print("Test MSE OLS")
print(MSE(y_test,ypredictOLS))

# Repeat now for Lasso and Ridge regression and various values of the regularization parameter
I = np.eye(p,p)
# Decide which values of lambda to use
nlambdas = 100
MSEPredict = np.zeros(nlambdas)
MSETrain = np.zeros(nlambdas)
MSELassoPredict = np.zeros(nlambdas)
MSELassoTrain = np.zeros(nlambdas)
lambdas = np.logspace(-4, 4, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
Ridgebeta = np.linalg.inv(X_train.T @ X_train+lmb*I) @ X_train.T @ y_train
# include lasso using Scikit-Learn
RegLasso = linear_model.Lasso(lmb)
RegLasso.fit(X_train,y_train)
# and then make the prediction
ytildeRidge = X_train @ Ridgebeta
ypredictRidge = X_test @ Ridgebeta
ytildeLasso = RegLasso.predict(X_train)
ypredictLasso = RegLasso.predict(X_test)
MSEPredict[i] = MSE(y_test,ypredictRidge)
MSETrain[i] = MSE(y_train,ytildeRidge)
MSELassoPredict[i] = MSE(y_test,ypredictLasso)
MSELassoTrain[i] = MSE(y_train,ytildeLasso)

# Now plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSETrain, label = 'MSE Ridge train')
plt.plot(np.log10(lambdas), MSEPredict, 'r--', label = 'MSE Ridge Test')
plt.plot(np.log10(lambdas), MSELassoTrain, label = 'MSE Lasso train')
plt.plot(np.log10(lambdas), MSELassoPredict, 'r--', label = 'MSE Lasso Test')

plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

Linking the regression analysis with a statistical interpreta-
tion
We will now couple the discussions of ordinary least squares, Ridge and Lasso
regression with a statistical interpretation, that is we move from a linear algebra
analysis to a statistical analysis. In particular, we will focus on what the
regularization terms can result in. We will amongst other things show that the
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regularization parameter can reduce considerably the variance of the parameters
β.

The advantage of doing linear regression is that we actually end up with
analytical expressions for several statistical quantities. Standard least squares
and Ridge regression allow us to derive quantities like the variance and other
expectation values in a rather straightforward way.

It is assumed that εi ∼ N (0, σ2) and the εi are independent, i.e.:

Cov(εi1 , εi2) =
{

σ2 if i1 = i2,
0 if i1 ̸= i2.

The randomness of εi implies that yi is also a random variable. In particular,
yi is normally distributed, because εi ∼ N (0, σ2) and Xi,∗ β is a non-random
scalar. To specify the parameters of the distribution of yi we need to calculate
its first two moments.

Recall that X is a matrix of dimensionality n × p. The notation above Xi,∗
means that we are looking at the row number i and perform a sum over all
values p.

Assumptions made
The assumption we have made here can be summarized as (and this is going to
be useful when we discuss the bias-variance trade off) that there exists a function
f(x) and a normal distributed error ε ∼ N (0, σ2) which describe our data

y = f(x) + ε

We approximate this function with our model from the solution of the linear
regression equations, that is our function f is approximated by ỹ where we want
to minimize (y − ỹ)2, our MSE, with

ỹ = Xβ.

Expectation value and variance
We can calculate the expectation value of y for a given element i

E(yi) = E(Xi,∗ β) + E(εi) = Xi,∗ β,

while its variance is

Var(yi) = E{[yi − E(yi)]2} = E(y2
i ) − [E(yi)]2

= E[(Xi,∗ β + εi)2] − (Xi,∗ β)2

= E[(Xi,∗ β)2 + 2εiXi,∗ β + ε2
i ] − (Xi,∗ β)2

= (Xi,∗ β)2 + 2E(εi)Xi,∗ β + E(ε2
i ) − (Xi,∗ β)2

= E(ε2
i ) = Var(εi) = σ2.

Hence, yi ∼ N (Xi,∗ β, σ2), that is y follows a normal distribution with mean
value Xβ and variance σ2 (not be confused with the singular values of the SVD).
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Expectation value and variance for β

With the OLS expressions for the parameters β we can evaluate the expectation
value

E(β) = E[(X⊤X)−1XT Y] = (XT X)−1XTE[Y] = (XT X)−1XT Xβ = β.

This means that the estimator of the regression parameters is unbiased.
We can also calculate the variance
The variance of β is

Var(β) = E{[β − E(β)][β − E(β)]T }
= E{[(XT X)−1 XT Y − β] [(XT X)−1 XT Y − β]T }
= (XT X)−1 XT E{Y YT } X (XT X)−1 − β βT

= (XT X)−1 XT {Xβ βT XT + σ2} X (XT X)−1 − β βT

= β βT + σ2 (XT X)−1 − β βT = σ2 (XT X)−1,

where we have used that E(YYT ) = Xβ βT XT + σ2 Inn. From Var(β) =
σ2 (XT X)−1, one obtains an estimate of the variance of the estimate of the j-th
regression coefficient: σ2(βj) = σ2[(XT X)−1]jj . This may be used to construct
a confidence interval for the estimates.

In a similar way, we can obtain analytical expressions for say the expectation
values of the parameters β and their variance when we employ Ridge regression,
allowing us again to define a confidence interval.

It is rather straightforward to show that

E
[
βRidge] = (XT X + λIpp)−1(X⊤X)βOLS.

We see clearly that E
[
βRidge] ̸= βOLS for any λ > 0. We say then that the ridge

estimator is biased.
We can also compute the variance as

Var[βRidge] = σ2[XT X + λI]−1XT X{[X⊤X + λI]−1}T ,

and it is easy to see that if the parameter λ goes to infinity then the variance of
Ridge parameters β goes to zero.

With this, we can compute the difference

Var[βOLS]−Var(βRidge) = σ2[XT X+λI]−1[2λI+λ2(XT X)−1]{[XT X+λI]−1}T .

The difference is non-negative definite since each component of the matrix
product is non-negative definite. This means the variance we obtain with the
standard OLS will always for λ > 0 be larger than the variance of β obtained
with the Ridge estimator. This has interesting consequences when we discuss
the so-called bias-variance trade-off below.
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Deriving OLS from a probability distribution
Our basic assumption when we derived the OLS equations was to assume that
our output is determined by a given continuous function f(x) and a random noise
ϵ given by the normal distribution with zero mean value and an undetermined
variance σ2.

We found above that the outputs y have a mean value given by Xβ̂ and
variance σ2. Since the entries to the design matrix are not stochastic variables,
we can assume that the probability distribution of our targets is also a normal
distribution but now with mean value Xβ̂. This means that a single output yi

is given by the Gaussian distribution

yi ∼ N (Xi,∗β, σ2) = 1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

Independent and Identically Distrubuted (iid)
We assume now that the various yi values are stochastically distributed according
to the above Gaussian distribution. We define this distribution as

p(yi,X|β) = 1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
,

which reads as finding the likelihood of an event yi with the input variables X
given the parameters (to be determined) β.

Since these events are assumed to be independent and identicall distributed
we can build the probability distribution function (PDF) for all possible event y
as the product of the single events, that is we have

p(y,X|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
=

n−1∏
i=0

p(yi,X|β).

We will write this in a more compact form reserving D for the domain of
events, including the ouputs (targets) and the inputs. That is in case we have a
simple one-dimensional input and output case

D = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)].

In the more general case the various inputs should be replaced by the possible
features represented by the input data set X. We can now rewrite the above
probability as

p(D|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

It is a conditional probability (see below) and reads as the likelihood of a
domain of events D given a set of parameters β.
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Maximum Likelihood Estimation (MLE)
In statistics, maximum likelihood estimation (MLE) is a method of estimating
the parameters of an assumed probability distribution, given some observed data.
This is achieved by maximizing a likelihood function so that, under the assumed
statistical model, the observed data is the most probable.

We will assume here that our events are given by the above Gaussian distri-
bution and we will determine the optimal parameters β by maximizing the above
PDF. However, computing the derivatives of a product function is cumbersome
and can easily lead to overflow and/or underflowproblems, with potentials for
loss of numerical precision.

In practice, it is more convenient to maximize the logarithm of the PDF
because it is a monotonically increasing function of the argument. Alternatively,
and this will be our option, we will minimize the negative of the logarithm since
this is a monotonically decreasing function.

Note also that maximization/minimization of the logarithm of the PDF is
equivalent to the maximization/minimization of the function itself.

A new Cost Function
We could now define a new cost function to minimize, namely the negative
logarithm of the above PDF

C(β = − log
n−1∏
i=0

p(yi,X|β) = −
n−1∑
i=0

log p(yi,X|β),

which becomes
C(β = n

2 log 2πσ2 + ||(y − Xβ)||22
2σ2 .

Taking the derivative of the new cost function with respect to the parameters
β we recognize our familiar OLS equation, namely

XT (y − Xβ) = 0,

which leads to the well-known OLS equation for the optimal paramters β

β̂OLS =
(
XTX

)−1
XTy!

Before we make a similar analysis for Ridge and Lasso regression, we need a
short reminder on statistics.

More basic Statistics and Bayes’ theorem
A central theorem in statistics is Bayes’ theorem. This theorem plays a similar
role as the good old Pythagoras’ theorem in geometry. Bayes’ theorem is
extremely simple to derive. But to do so we need some basic axioms from
statistics.
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Assume we have two domains of events X = [x0, x1, . . . , xn−1] and Y =
[y0, y1, . . . , yn−1].

We define also the likelihood for X and Y as p(X) and p(Y ) respectively.
The likelihood of a specific event xi (or yi) is then written as p(X = xi) or just
p(xi) = pi.

Union of events is given by.
p(X ∪ Y ) = p(X) + p(Y ) − p(X ∩ Y ).

The product rule (aka joint probability) is given by.
p(X ∪ Y ) = p(X, Y ) = p(X|Y )p(Y ) = p(Y |X)p(X),

where we read p(X|Y ) as the likelihood of obtaining X given Y .
If we have independent events then p(X, Y ) = p(X)p(Y ).

Marginal Probability
The marginal probability is defined in terms of only one of the set of variables
X, Y . For a discrete probability we have

p(X) =
n−1∑
i=0

p(X, Y = yi) =
n−1∑
i=0

p(X|Y = yi)p(Y = yi) =
n−1∑
i=0

p(X|yi)p(yi).

Conditional Probability
The conditional probability, if p(Y ) > 0, is

p(X|Y ) = p(X, Y )
p(Y ) = p(X, Y )∑n−1

i=0 p(Y |X = xi)p(xi)
.

Bayes’ Theorem
If we combine the conditional probability with the marginal probability and the
standard product rule, we have

p(X|Y ) = p(X, Y )
p(Y ) ,

which we can rewrite as

p(X|Y ) = p(X, Y )∑n−1
i=0 p(Y |X = xi)p(xi)

= p(Y |X)p(X)∑n−1
i=0 p(Y |X = xi)p(xi)

,

which is Bayes’ theorem. It allows us to evaluate the uncertainty in in X after
we have observed Y . We can easily interchange X with Y .
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Interpretations of Bayes’ Theorem
The quantity p(Y |X) on the right-hand side of the theorem is evaluated for
the observed data Y and can be viewed as a function of the parameter space
represented by X. This function is not necesseraly normalized and is normally
called the likelihood function.

The function p(X) on the right hand side is called the prior while the function
on the left hand side is the called the posterior probability. The denominator on
the right hand side serves as a normalization factor for the posterior distribution.

Let us try to illustrate Bayes’ theorem through an example.

Example of Usage of Bayes’ theorem
Let us suppose that you are undergoing a series of mammography scans in order
to rule out possible breast cancer cases. We define the sensitivity for a positive
event by the variable X. It takes binary values with X = 1 representing a
positive event and X = 0 being a negative event. We reserve Y as a classification
parameter for either a negative or a positive breast cancer confirmation. (Short
note on wordings: positive here means having breast cancer, although none of
us would consider this being a positive thing).

We let Y = 1 represent the the case of having breast cancer and Y = 0 as
not.

Let us assume that if you have breast cancer, the test will be positive with a
probability of 0.8, that is we have

p(X = 1|Y = 1) = 0.8.

This obviously sounds scary since many would conclude that if the test is
positive, there is a likelihood of 80% for having cancer. It is however not correct,
as the following Bayesian analysis shows.

Doing it correctly
If we look at various national surveys on breast cancer, the general likelihood of
developing breast cancer is a very small number. Let us assume that the prior
probability in the population as a whole is

p(Y = 1) = 0.004.

We need also to account for the fact that the test may produce a false positive
result (false alarm). Let us here assume that we have

p(X = 1|Y = 0) = 0.1.

Using Bayes’ theorem we can then find the posterior probability that the
person has breast cancer in case of a positive test, that is we can compute

17



p(Y = 1|X = 1) = p(X = 1|Y = 1)p(Y = 1)
p(X = 1|Y = 1)p(Y = 1) + p(X = 1|Y = 0)p(Y = 0) = 0.8 × 0.004

0.8 × 0.004 + 0.1 × 0.996 = 0.031.

That is, in case of a positive test, there is only a 3% chance of having breast
cancer!

Bayes’ Theorem and Ridge and Lasso Regression
Hitherto we have discussed Ridge and Lasso regression in terms of a linear
analysis. This may to many of you feel rather technical and perhaps not that
intuitive. The question is whether we can develop a more intuitive way of
understanding what Ridge and Lasso express.

Before we proceed let us perform a Ridge, Lasso and OLS analysis of a
polynomial fit.

Test Function for what happens with OLS, Ridge and Lasso
We will play around with a study of the values for the optimal parameters β
using OLS, Ridge and Lasso regression. For OLS, you will notice as function
of the noise and polynomial degree, that the parameters β will fluctuate from
order to order in the polynomial fit and that for larger and larger polynomial
degrees of freedom, the parameters will tend to increase in value for OLS.

For Ridge and Lasso regression, the higher order parameters will typically
be reduced, providing thereby less fluctuations from one order to another one.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import linear_model

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# Make data set.
n = 10000
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((len(x),Maxpolydegree))
X[:,0] = 1.0

for polydegree in range(1, Maxpolydegree):
for degree in range(polydegree):

X[:,degree] = x**(degree)

# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
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# matrix inversion to find beta
OLSbeta = np.linalg.pinv(X_train.T @ X_train) @ X_train.T @ y_train
print(OLSbeta)
ypredictOLS = X_test @ OLSbeta
print("Test MSE OLS")
print(MSE(y_test,ypredictOLS))
# Repeat now for Lasso and Ridge regression and various values of the regularization parameter using Scikit-Learn
# Decide which values of lambda to use
nlambdas = 4
MSERidgePredict = np.zeros(nlambdas)
MSELassoPredict = np.zeros(nlambdas)
lambdas = np.logspace(-3, 1, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
# Make the fit using Ridge and Lasso
RegRidge = linear_model.Ridge(lmb,fit_intercept=False)
RegRidge.fit(X_train,y_train)
RegLasso = linear_model.Lasso(lmb,fit_intercept=False)
RegLasso.fit(X_train,y_train)
# and then make the prediction
ypredictRidge = RegRidge.predict(X_test)
ypredictLasso = RegLasso.predict(X_test)
# Compute the MSE and print it
MSERidgePredict[i] = MSE(y_test,ypredictRidge)
MSELassoPredict[i] = MSE(y_test,ypredictLasso)
print(lmb,RegRidge.coef_)
print(lmb,RegLasso.coef_)

# Now plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSERidgePredict, 'b', label = 'MSE Ridge Test')
plt.plot(np.log10(lambdas), MSELassoPredict, 'r', label = 'MSE Lasso Test')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

How can we understand this?

Invoking Bayes’ theorem
Using Bayes’ theorem we can gain a better intuition about Ridge and Lasso
regression.

For ordinary least squares we postulated that the maximum likelihood for
the doamin of events D (one-dimensional case)

D = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)],

is given by

p(D|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

In Bayes’ theorem this function plays the role of the so-called likelihood. We
could now ask the question what is the posterior probability of a parameter
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set β given a domain of events D? That is, how can we define the posterior
probability

p(β|D).

Bayes’ theorem comes to our rescue here since (omitting the normalization
constant)

p(β|D) ∝ p(D|β)p(β).

We have a model for p(D|β) but need one for the prior p(β!

Ridge and Bayes
With the posterior probability defined by a likelihood which we have already
modeled and an unknown prior, we are now ready to make additional models
for the prior.

We can, based on our discussions of the variance of β and the mean value,
assume that the prior for the values β is given by a Gaussian with mean value
zero and variance τ2, that is

p(β) =
p−1∏
j=0

exp
(

−
β2

j

2τ2

)
.

Our posterior probability becomes then (omitting the normalization factor
which is just a constant)

p(β|D) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

] p−1∏
j=0

exp
(

−
β2

j

2τ2

)
.

We can now optimize this quantity with respect to β. As we did for OLS,
this is most conveniently done by taking the negative logarithm of the posterior
probability. Doing so and leaving out the constants terms that do not depend
on β, we have

C(β) = ||(y − Xβ)||22
2σ2 + 1

2τ2 ||β||22,

and replacing 1/2τ2 with λ we have

C(β) = ||(y − Xβ)||22
2σ2 + λ||β||22,

which is our Ridge cost function! Nice, isn’t it?
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Lasso and Bayes
To derive the Lasso cost function, we simply replace the Gaussian prior with an
exponential distribution (Laplace in this case) with zero mean value, that is

p(β) =
p−1∏
j=0

exp
(

−|βj |
τ

)
.

Our posterior probability becomes then (omitting the normalization factor
which is just a constant)

p(β|D) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

] p−1∏
j=0

exp
(

−|βj |
τ

)
.

Taking the negative logarithm of the posterior probability and leaving out
the constants terms that do not depend on β, we have

C(β = ||(y − Xβ)||22
2σ2 + 1

τ
||β||1,

and replacing 1/τ with λ we have

C(β = ||(y − Xβ)||22
2σ2 + λ||β||1,

which is our Lasso cost function!

Deriving OLS from a probability distribution
Our basic assumption when we derived the OLS equations was to assume that
our output is determined by a given continuous function f(x) and a random noise
ϵ given by the normal distribution with zero mean value and an undetermined
variance σ2.

We found above that the outputs y have a mean value given by Xβ̂ and
variance σ2. Since the entries to the design matrix are not stochastic variables,
we can assume that the probability distribution of our targets is also a normal
distribution but now with mean value Xβ̂. This means that a single output yi

is given by the Gaussian distribution

yi ∼ N (Xi,∗β, σ2) = 1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

Independent and Identically Distrubuted (iid)
We assume now that the various yi values are stochastically distributed according
to the above Gaussian distribution. We define this distribution as

p(yi,X|β) = 1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
,
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which reads as finding the likelihood of an event yi with the input variables X
given the parameters (to be determined) β.

Since these events are assumed to be independent and identicall distributed
we can build the probability distribution function (PDF) for all possible event y
as the product of the single events, that is we have

p(y,X|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
=

n−1∏
i=0

p(yi,X|β).

We will write this in a more compact form reserving D for the domain of
events, including the ouputs (targets) and the inputs. That is in case we have a
simple one-dimensional input and output case

D = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)].

In the more general case the various inputs should be replaced by the possible
features represented by the input data set X. We can now rewrite the above
probability as

p(D|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

It is a conditional probability (see below) and reads as the likelihood of a
domain of events D given a set of parameters β.

Maximum Likelihood Estimation (MLE)
In statistics, maximum likelihood estimation (MLE) is a method of estimating
the parameters of an assumed probability distribution, given some observed data.
This is achieved by maximizing a likelihood function so that, under the assumed
statistical model, the observed data is the most probable.

We will assume here that our events are given by the above Gaussian distri-
bution and we will determine the optimal parameters β by maximizing the above
PDF. However, computing the derivatives of a product function is cumbersome
and can easily lead to overflow and/or underflowproblems, with potentials for
loss of numerical precision.

In practice, it is more convenient to maximize the logarithm of the PDF
because it is a monotonically increasing function of the argument. Alternatively,
and this will be our option, we will minimize the negative of the logarithm since
this is a monotonically decreasing function.

Note also that maximization/minimization of the logarithm of the PDF is
equivalent to the maximization/minimization of the function itself.

A new Cost Function
We could now define a new cost function to minimize, namely the negative
logarithm of the above PDF
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C(β = − log
n−1∏
i=0

p(yi,X|β) = −
n−1∑
i=0

log p(yi,X|β),

which becomes
C(β = n

2 log 2πσ2 + ||(y − Xβ)||22
2σ2 .

Taking the derivative of the new cost function with respect to the parameters
β we recognize our familiar OLS equation, namely

XT (y − Xβ) = 0,

which leads to the well-known OLS equation for the optimal paramters β

β̂OLS =
(
XTX

)−1
XTy!

Bayes’ Theorem
If we combine the conditional probability with the marginal probability and the
standard product rule, we have

p(X|Y ) = p(X, Y )
p(Y ) ,

which we can rewrite as

p(X|Y ) = p(X, Y )∑n−1
i=0 p(Y |X = xi)p(xi)

= p(Y |X)p(X)∑n−1
i=0 p(Y |X = xi)p(xi)

,

which is Bayes’ theorem. It allows us to evaluate the uncertainty in in X after
we have observed Y . We can easily interchange X with Y .

Interpretations of Bayes’ Theorem
The quantity p(Y |X) on the right-hand side of the theorem is evaluated for
the observed data Y and can be viewed as a function of the parameter space
represented by X. This function is not necesseraly normalized and is normally
called the likelihood function.

The function p(X) on the right hand side is called the prior while the function
on the left hand side is the called the posterior probability. The denominator on
the right hand side serves as a normalization factor for the posterior distribution.

Test Function for what happens with OLS, Ridge and Lasso
We will play around with a study of the values for the optimal parameters β
using OLS, Ridge and Lasso regression. For OLS, you will notice as function
of the noise and polynomial degree, that the parameters β will fluctuate from
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order to order in the polynomial fit and that for larger and larger polynomial
degrees of freedom, the parameters will tend to increase in value for OLS.

For Ridge and Lasso regression, the higher order parameters will typically
be reduced, providing thereby less fluctuations from one order to another one.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import linear_model

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# Make data set.
n = 10000
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((len(x),Maxpolydegree))
X[:,0] = 1.0

for polydegree in range(1, Maxpolydegree):
for degree in range(polydegree):

X[:,degree] = x**(degree)

# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# matrix inversion to find beta
OLSbeta = np.linalg.pinv(X_train.T @ X_train) @ X_train.T @ y_train
print(OLSbeta)
ypredictOLS = X_test @ OLSbeta
print("Test MSE OLS")
print(MSE(y_test,ypredictOLS))
# Repeat now for Lasso and Ridge regression and various values of the regularization parameter using Scikit-Learn
# Decide which values of lambda to use
nlambdas = 4
MSERidgePredict = np.zeros(nlambdas)
MSELassoPredict = np.zeros(nlambdas)
lambdas = np.logspace(-3, 1, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
# Make the fit using Ridge and Lasso
RegRidge = linear_model.Ridge(lmb,fit_intercept=False)
RegRidge.fit(X_train,y_train)
RegLasso = linear_model.Lasso(lmb,fit_intercept=False)
RegLasso.fit(X_train,y_train)
# and then make the prediction
ypredictRidge = RegRidge.predict(X_test)
ypredictLasso = RegLasso.predict(X_test)
# Compute the MSE and print it
MSERidgePredict[i] = MSE(y_test,ypredictRidge)
MSELassoPredict[i] = MSE(y_test,ypredictLasso)
print(lmb,RegRidge.coef_)
print(lmb,RegLasso.coef_)
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# Now plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSERidgePredict, 'b', label = 'MSE Ridge Test')
plt.plot(np.log10(lambdas), MSELassoPredict, 'r', label = 'MSE Lasso Test')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

How can we understand this?

Rerunning the above code
Let us write out the values of the coefficients βi as functions of the polynomial
degree and noise. We will focus only on the Ridge results and some few selected
values of the hyperparameter λ.

If we don’t include any noise and run this code for different values of the
polynomial degree, we notice that the results for βi do not show great changes
from one order to the next. This is an indication that for higher polynomial
orders, our parameters become less important.

If we however add noise, what happens is that the polynomial fit is trying
to adjust the fit to traverse in the best possible way all data points. This can
lead to large fluctuations in the parameters βi as functions of polynomial order.
It will also be reflected in a larger value of the variance of each parameter βi.
What Ridge regression (and Lasso as well) are doing then is to try to quench
the fluctuations in the parameters of βi which have a large variance (normally
for higher orders in the polynomial).

import numpy as np
import pandas as pd
from IPython.display import display
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import linear_model

# Make data set.
n = 1000
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((len(x),Maxpolydegree))
X[:,0] = 1.0

for polydegree in range(1, Maxpolydegree):
for degree in range(polydegree):

X[:,degree] = x**(degree)

# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
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# Decide which values of lambda to use
nlambdas = 5
lambdas = np.logspace(-3, 2, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
# Make the fit using Ridge only
RegRidge = linear_model.Ridge(lmb,fit_intercept=False)
RegRidge.fit(X_train,y_train)
# and then make the prediction
ypredictRidge = RegRidge.predict(X_test)
Coeffs = np.array(RegRidge.coef_)
BetaValues = pd.DataFrame(Coeffs)
BetaValues.columns = ['beta']
display(BetaValues)

Invoking Bayes’ theorem
Using Bayes’ theorem we can gain a better intuition about Ridge and Lasso
regression.

For ordinary least squares we postulated that the maximum likelihood for
the doamin of events D (one-dimensional case)

D = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)],

is given by

p(D|β) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

]
.

In Bayes’ theorem this function plays the role of the so-called likelihood. We
could now ask the question what is the posterior probability of a parameter
set β given a domain of events D? That is, how can we define the posterior
probability

p(β|D).

Bayes’ theorem comes to our rescue here since (omitting the normalization
constant)

p(β|D) ∝ p(D|β)p(β).

We have a model for p(D|β) but need one for the prior p(β!

Ridge and Bayes
With the posterior probability defined by a likelihood which we have already
modeled and an unknown prior, we are now ready to make additional models
for the prior.

We can, based on our discussions of the variance of β and the mean value,
assume that the prior for the values β is given by a Gaussian with mean value
zero and variance τ2, that is
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p(β) =
p−1∏
j=0

exp
(

−
β2

j

2τ2

)
.

Our posterior probability becomes then (omitting the normalization factor
which is just a constant)

p(β|D) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

] p−1∏
j=0

exp
(

−
β2

j

2τ2

)
.

We can now optimize this quantity with respect to β. As we did for OLS,
this is most conveniently done by taking the negative logarithm of the posterior
probability. Doing so and leaving out the constants terms that do not depend
on β, we have

C(β) = ||(y − Xβ)||22
2σ2 + 1

2τ2 ||β||22,

and replacing 1/2τ2 with λ we have

C(β) = ||(y − Xβ)||22
2σ2 + λ||β||22,

which is our Ridge cost function! Nice, isn’t it?

Lasso and Bayes
To derive the Lasso cost function, we simply replace the Gaussian prior with an
exponential distribution (Laplace in this case) with zero mean value, that is

p(β) =
p−1∏
j=0

exp
(

−|βj |
τ

)
.

Our posterior probability becomes then (omitting the normalization factor
which is just a constant)

p(β|D) =
n−1∏
i=0

1√
2πσ2

exp
[
− (yi − Xi,∗β)2

2σ2

] p−1∏
j=0

exp
(

−|βj |
τ

)
.

Taking the negative logarithm of the posterior probability and leaving out
the constants terms that do not depend on β, we have

C(β = ||(y − Xβ)||22
2σ2 + 1

τ
||β||1,

and replacing 1/τ with λ we have

C(β = ||(y − Xβ)||22
2σ2 + λ||β||1,

which is our Lasso cost function!
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Why resampling methods
Before we proceed, we need to rethink what we have been doing. In our eager
to fit the data, we have omitted several important elements in our regression
analysis. In what follows we will

1. look at statistical properties, including a discussion of mean values, variance
and the so-called bias-variance tradeoff

2. introduce resampling techniques like cross-validation, bootstrapping and
jackknife and more

and discuss how to select a given model (one of the difficult parts in machine
learning).

Resampling methods
Resampling methods are an indispensable tool in modern statistics. They

involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training data,
fit a linear regression to each new sample, and then examine the extent to which
the resulting fits differ. Such an approach may allow us to obtain information
that would not be available from fitting the model only once using the original
training sample.

Two resampling methods are often used in Machine Learning analyses,

1. The bootstrap method

2. and Cross-Validation

In addition there are several other methods such as the Jackknife and the Blocking
methods. We will discuss in particular cross-validation and the bootstrap method.

Resampling approaches can be computationally expensive
Resampling approaches can be computationally expensive, because they involve

fitting the same statistical method multiple times using different subsets of
the training data. However, due to recent advances in computing power, the
computational requirements of resampling methods generally are not prohibitive.
In this chapter, we discuss two of the most commonly used resampling methods,
cross-validation and the bootstrap. Both methods are important tools in the
practical application of many statistical learning procedures. For example, cross-
validation can be used to estimate the test error associated with a given statistical
learning method in order to evaluate its performance, or to select the appropriate
level of flexibility. The process of evaluating a model’s performance is known as
model assessment, whereas the process of selecting the proper level of flexibility
for a model is known as model selection. The bootstrap is widely used.
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Why resampling methods ?
Statistical analysis.

• Our simulations can be treated as computer experiments. This is particu-
larly the case for Monte Carlo methods which are widely used in statistical
analyses.

• The results can be analysed with the same statistical tools as we would
use when analysing experimental data.

• As in all experiments, we are looking for expectation values and an estimate
of how accurate they are, i.e., possible sources for errors.

Statistical analysis

• As in other experiments, many numerical experiments have two classes of
errors:

– Statistical errors
– Systematical errors

• Statistical errors can be estimated using standard tools from statistics

• Systematical errors are method specific and must be treated differently
from case to case.

Resampling methods
With all these analytical equations for both the OLS and Ridge regression, we
will now outline how to assess a given model. This will lead to a discussion of the
so-called bias-variance tradeoff (see below) and so-called resampling methods.

One of the quantities we have discussed as a way to measure errors is the
mean-squared error (MSE), mainly used for fitting of continuous functions.
Another choice is the absolute error.

In the discussions below we will focus on the MSE and in particular since we
will split the data into test and training data, we discuss the

1. prediction error or simply the test error ErrTest, where we have a fixed
training set and the test error is the MSE arising from the data reserved
for testing. We discuss also the

2. training error ErrTrain, which is the average loss over the training data.
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As our model becomes more and more complex, more of the training data tends
to used. The training may thence adapt to more complicated structures in the
data. This may lead to a decrease in the bias (see below for code example)
and a slight increase of the variance for the test error. For a certain level of
complexity the test error will reach minimum, before starting to increase again.
The training error reaches a saturation.

Resampling methods: Jackknife and Bootstrap
Two famous resampling methods are the independent bootstrap and the
jackknife.

The jackknife is a special case of the independent bootstrap. Still, the
jackknife was made popular prior to the independent bootstrap. And as the
popularity of the independent bootstrap soared, new variants, such as the
dependent bootstrap have also been developed..

The Jackknife and independent bootstrap work for independent, identically
distributed random variables. If these conditions are not satisfied, the methods
will fail. Yet, it should be said that if the data are independent, identically
distributed, and we only want to estimate the variance of X (which often is the
case), then there is no need for bootstrapping.

Resampling methods: Jackknife
The Jackknife works by making many replicas of the estimator β̂. The jackknife
is a resampling method where we systematically leave out one observation from
the vector of observed values x = (x1, x2, · · · , Xn). Let xi denote the vector

xi = (x1, x2, · · · , xi−1, xi+1, · · · , xn),

which equals the vector x with the exception that observation number i is
left out. Using this notation, define β̂i to be the estimator β̂ computed using X⃗i.

Jackknife code example
from numpy import *
from numpy.random import randint, randn
from time import time

def jackknife(data, stat):
n = len(data);t = zeros(n); inds = arange(n); t0 = time()
## 'jackknifing' by leaving out an observation for each i
for i in range(n):

t[i] = stat(delete(data,i) )

# analysis
print("Runtime: %g sec" % (time()-t0)); print("Jackknife Statistics :")
print("original bias std. error")
print("%8g %14g %15g" % (stat(data),(n-1)*mean(t)/n, (n*var(t))**.5))

return t
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# Returns mean of data samples
def stat(data):

return mean(data)

mu, sigma = 100, 15
datapoints = 10000
x = mu + sigma*random.randn(datapoints)
# jackknife returns the data sample
t = jackknife(x, stat)

Resampling methods: Bootstrap
Bootstrapping is a non-parametric approach to statistical inference that substi-

tutes computation for more traditional distributional assumptions and asymptotic
results. Bootstrapping offers a number of advantages:

1. The bootstrap is quite general, although there are some cases in which it
fails.

2. Because it does not require distributional assumptions (such as normally
distributed errors), the bootstrap can provide more accurate inferences
when the data are not well behaved or when the sample size is small.

3. It is possible to apply the bootstrap to statistics with sampling distributions
that are difficult to derive, even asymptotically.

4. It is relatively simple to apply the bootstrap to complex data-collection
plans (such as stratified and clustered samples).

The textbook by Davison on the Bootstrap Methods and their Applications
provides many more insights and proofs. In this course we will take a more
practical approach and use the results and theorems provided in the literature.
For those interested in reading more about the bootstrap methods, we recommend
the above text and the one by Efron and Tibshirani.

Before we proceed however, we need to remind ourselves about a central
theorem in statistics, namely the so-called central limit theorem.

The Central Limit Theorem
Suppose we have a PDF p(x) from which we generate a series N of averages
E[xi]. Each mean value E[xi] is viewed as the average of a specific measurement,
e.g., throwing dice 100 times and then taking the average value, or producing a
certain amount of random numbers. For notational ease, we set E[xi] = xi in
the discussion which follows. We do the same for E[z] = z.

If we compute the mean z of m such mean values xi

z = x1 + x2 + · · · + xm

m
,
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the question we pose is which is the PDF of the new variable z.

Finding the Limit
The probability of obtaining an average value z is the product of the probabilities
of obtaining arbitrary individual mean values xi, but with the constraint that
the average is z. We can express this through the following expression

p̃(z) =
∫

dx1p(x1)
∫

dx2p(x2)· · ·
∫

dxmp(xm)δ(z − x1 + x2 + · · · + xm

m
),

where the δ-function enbodies the constraint that the mean is z. All measure-
ments that lead to each individual xi are expected to be independent, which
in turn means that we can express p̃ as the product of individual p(xi). The
independence assumption is important in the derivation of the central limit
theorem.

Rewriting the δ-function
If we use the integral expression for the δ-function

δ(z − x1 + x2 + · · · + xm

m
) = 1

2π

∫ ∞

−∞
dq exp

(
iq(z − x1 + x2 + · · · + xm

m
)
)

,

and inserting eiµq−iµq where µ is the mean value we arrive at

p̃(z) = 1
2π

∫ ∞

−∞
dq exp (iq(z − µ))

[∫ ∞

−∞
dxp(x) exp (iq(µ − x)/m)

]m

,

with the integral over x resulting in

∫ ∞

−∞
dxp(x) exp (iq(µ − x)/m) =

∫ ∞

−∞
dxp(x)

[
1 + iq(µ − x)

m
− q2(µ − x)2

2m2 + . . .

]
.

Identifying Terms
The second term on the rhs disappears since this is just the mean and employing
the definition of σ2 we have∫ ∞

−∞
dxp(x)e(iq(µ−x)/m) = 1 − q2σ2

2m2 + . . . ,

resulting in[∫ ∞

−∞
dxp(x) exp (iq(µ − x)/m)

]m

≈
[
1 − q2σ2

2m2 + . . .

]m

,

and in the limit m → ∞ we obtain
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p̃(z) = 1√
2π(σ/

√
m)

exp
(

− (z − µ)2

2(σ/
√

m)2

)
,

which is the normal distribution with variance σ2
m = σ2/m, where σ is the

variance of the PDF p(x) and µ is also the mean of the PDF p(x).

Wrapping it up
Thus, the central limit theorem states that the PDF p̃(z) of the average of m
random values corresponding to a PDF p(x) is a normal distribution whose mean
is the mean value of the PDF p(x) and whose variance is the variance of the
PDF p(x) divided by m, the number of values used to compute z.

The central limit theorem leads to the well-known expression for the standard
deviation, given by

σm = σ√
m

.

The latter is true only if the average value is known exactly. This is obtained
in the limit m → ∞ only. Because the mean and the variance are measured
quantities we obtain the familiar expression in statistics (the so-called Bessel
correction)

σm ≈ σ√
m − 1

.

In many cases however the above estimate for the standard deviation, in
particular if correlations are strong, may be too simplistic. Keep in mind that we
have assumed that the variables x are independent and identically distributed.
This is obviously not always the case. For example, the random numbers (or
better pseudorandom numbers) we generate in various calculations do always
exhibit some correlations.

The theorem is satisfied by a large class of PDFs. Note however that for a
finite m, it is not always possible to find a closed form /analytic expression for
p̃(x).

Confidence Intervals
Confidence intervals are used in statistics and represent a type of estimate
computed from the observed data. This gives a range of values for an unknown
parameter such as the parameters β from linear regression.

With the OLS expressions for the parameters β we found E(β) = β, which
means that the estimator of the regression parameters is unbiased.

We found also that the variance of the estimate of the j-th regression coeffi-
cient is σ2(βj) = σ2[(XT X)−1]jj .

This quantity will be used to construct a confidence interval for the estimates.
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Standard Approach based on the Normal Distribution
We will assume that the parameters β follow a normal distribution. We can then
define the confidence interval. Here we will be using as shorthands µβ for the
above mean value and σβ for the standard deviation. We have then a confidence
interval (

µβ ± zσβ√
n

)
,

where z defines the level of certainty (or confidence). For a normal distribution
typical parameters are z = 2.576 which corresponds to a confidence of 99% while
z = 1.96 corresponds to a confidence of 95%. A confidence level of 95% is
commonly used and it is normally referred to as a two-sigmas confidence level,
that is we approximate z ≈ 2.

For more discussions of confidence intervals (and in particular linked with a
discussion of the bootstrap method), see chapter 5 of the textbook by Davison
on the Bootstrap Methods and their Applications

In this text you will also find an in-depth discussion of the Bootstrap method,
why it works and various theorems related to it.

Resampling methods: Bootstrap background
Since β̂ = β̂(X) is a function of random variables, β̂ itself must be a random
variable. Thus it has a pdf, call this function p(t). The aim of the bootstrap
is to estimate p(t) by the relative frequency of β̂. You can think of this as
using a histogram in the place of p(t). If the relative frequency closely resembles
p(⃗t), then using numerics, it is straight forward to estimate all the interesting
parameters of p(t) using point estimators.

Resampling methods: More Bootstrap background
In the case that β̂ has more than one component, and the components are
independent, we use the same estimator on each component separately. If the
probability density function of Xi, p(x), had been known, then it would have
been straightforward to do this by:

1. Drawing lots of numbers from p(x), suppose we call one such set of numbers
(X∗

1 , X∗
2 , · · · , X∗

n).

2. Then using these numbers, we could compute a replica of β̂ called β̂∗.

By repeated use of the above two points, many estimates of β̂ can be obtained.
The idea is to use the relative frequency of β̂∗ (think of a histogram) as an
estimate of p(t).
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Resampling methods: Bootstrap approach
But unless there is enough information available about the process that generated
X1, X2, · · · , Xn, p(x) is in general unknown. Therefore, Efron in 1979 asked the
question: What if we replace p(x) by the relative frequency of the observation
Xi?

If we draw observations in accordance with the relative frequency of the
observations, will we obtain the same result in some asymptotic sense? The
answer is yes.

Resampling methods: Bootstrap steps
The independent bootstrap works like this:

1. Draw with replacement n numbers for the observed variables x = (x1, x2, · · · , xn).

2. Define a vector x∗ containing the values which were drawn from x.

3. Using the vector x∗ compute β̂∗ by evaluating β̂ under the observations
x∗.

4. Repeat this process k times.

When you are done, you can draw a histogram of the relative frequency of β̂∗.
This is your estimate of the probability distribution p(t). Using this probability
distribution you can estimate any statistics thereof. In principle you never draw
the histogram of the relative frequency of β̂∗. Instead you use the estimators
corresponding to the statistic of interest. For example, if you are interested in
estimating the variance of β̂, apply the etsimator σ̂2 to the values β̂∗.

Code example for the Bootstrap method
The following code starts with a Gaussian distribution with mean value µ = 100
and variance σ = 15. We use this to generate the data used in the bootstrap
analysis. The bootstrap analysis returns a data set after a given number of
bootstrap operations (as many as we have data points). This data set consists of
estimated mean values for each bootstrap operation. The histogram generated
by the bootstrap method shows that the distribution for these mean values is
also a Gaussian, centered around the mean value µ = 100 but with standard
deviation σ/

√
n, where n is the number of bootstrap samples (in this case the

same as the number of original data points). The value of the standard deviation
is what we expect from the central limit theorem.

import numpy as np
from time import time
from scipy.stats import norm
import matplotlib.pyplot as plt

# Returns mean of bootstrap samples
# Bootstrap algorithm
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def bootstrap(data, datapoints):
t = np.zeros(datapoints)
n = len(data)
# non-parametric bootstrap
for i in range(datapoints):

t[i] = np.mean(data[np.random.randint(0,n,n)])
# analysis
print("Bootstrap Statistics :")
print("original bias std. error")
print("%8g %8g %14g %15g" % (np.mean(data), np.std(data),np.mean(t),np.std(t)))
return t

# We set the mean value to 100 and the standard deviation to 15
mu, sigma = 100, 15
datapoints = 10000
# We generate random numbers according to the normal distribution
x = mu + sigma*np.random.randn(datapoints)
# bootstrap returns the data sample
t = bootstrap(x, datapoints)

We see that our new variance and from that the standard deviation, agrees
with the central limit theorem.

Plotting the Histogram
# the histogram of the bootstrapped data (normalized data if density = True)
n, binsboot, patches = plt.hist(t, 50, density=True, facecolor='red', alpha=0.75)
# add a 'best fit' line
y = norm.pdf(binsboot, np.mean(t), np.std(t))
lt = plt.plot(binsboot, y, 'b', linewidth=1)
plt.xlabel('x')
plt.ylabel('Probability')
plt.grid(True)
plt.show()

The bias-variance tradeoff
We will discuss the bias-variance tradeoff in the context of continuous predictions
such as regression. However, many of the intuitions and ideas discussed here
also carry over to classification tasks. Consider a dataset D consisting of the
data XD = {(yj ,xj), j = 0 . . . n − 1}.

Let us assume that the true data is generated from a noisy model

y = f(x) + ϵ

where ϵ is normally distributed with mean zero and standard deviation σ2.
In our derivation of the ordinary least squares method we defined then an

approximation to the function f in terms of the parameters β and the design
matrix X which embody our model, that is ỹ = Xβ.
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Thereafter we found the parameters β by optimizing the means squared error
via the so-called cost function

C(X,β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = E
[
(y − ỹ)2] .

We can rewrite this as

E
[
(y − ỹ)2] = 1

n

∑
i

(fi − E [ỹ])2 + 1
n

∑
i

(ỹi − E [ỹ])2 + σ2.

The three terms represent the square of the bias of the learning method,
which can be thought of as the error caused by the simplifying assumptions built
into the method. The second term represents the variance of the chosen model
and finally the last terms is variance of the error ϵ.

To derive this equation, we need to recall that the variance of y and ϵ are
both equal to σ2. The mean value of ϵ is by definition equal to zero. Furthermore,
the function f is not a stochastics variable, idem for ỹ. We use a more compact
notation in terms of the expectation value

E
[
(y − ỹ)2] = E

[
(f + ϵ − ỹ)2] ,

and adding and subtracting E [ỹ] we get

E
[
(y − ỹ)2] = E

[
(f + ϵ − ỹ + E [ỹ] − E [ỹ])2] ,

which, using the abovementioned expectation values can be rewritten as

E
[
(y − ỹ)2] = E

[
(y − E [ỹ])2]+ Var [ỹ] + σ2,

that is the rewriting in terms of the so-called bias, the variance of the model ỹ
and the variance of ϵ.
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A way to Read the Bias-Variance Tradeoff

Example code for Bias-Variance tradeoff
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.utils import resample

np.random.seed(2018)

n = 500
n_boostraps = 100
degree = 18 # A quite high value, just to show.
noise = 0.1

# Make data set.
x = np.linspace(-1, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2) + np.random.normal(0, 0.1, x.shape)

# Hold out some test data that is never used in training.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

# Combine x transformation and model into one operation.
# Not neccesary, but convenient.
model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))
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# The following (m x n_bootstraps) matrix holds the column vectors y_pred
# for each bootstrap iteration.
y_pred = np.empty((y_test.shape[0], n_boostraps))
for i in range(n_boostraps):

x_, y_ = resample(x_train, y_train)

# Evaluate the new model on the same test data each time.
y_pred[:, i] = model.fit(x_, y_).predict(x_test).ravel()

# Note: Expectations and variances taken w.r.t. different training
# data sets, hence the axis=1. Subsequent means are taken across the test data
# set in order to obtain a total value, but before this we have error/bias/variance
# calculated per data point in the test set.
# Note 2: The use of keepdims=True is important in the calculation of bias as this
# maintains the column vector form. Dropping this yields very unexpected results.
error = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )
bias = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )
variance = np.mean( np.var(y_pred, axis=1, keepdims=True) )
print('Error:', error)
print('Bias^2:', bias)
print('Var:', variance)
print('{} >= {} + {} = {}'.format(error, bias, variance, bias+variance))

plt.plot(x[::5, :], y[::5, :], label='f(x)')
plt.scatter(x_test, y_test, label='Data points')
plt.scatter(x_test, np.mean(y_pred, axis=1), label='Pred')
plt.legend()
plt.show()

Understanding what happens
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.utils import resample

np.random.seed(2018)

n = 40
n_boostraps = 100
maxdegree = 14

# Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)
error = np.zeros(maxdegree)
bias = np.zeros(maxdegree)
variance = np.zeros(maxdegree)
polydegree = np.zeros(maxdegree)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

for degree in range(maxdegree):
model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))
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y_pred = np.empty((y_test.shape[0], n_boostraps))
for i in range(n_boostraps):

x_, y_ = resample(x_train, y_train)
y_pred[:, i] = model.fit(x_, y_).predict(x_test).ravel()

polydegree[degree] = degree
error[degree] = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )
bias[degree] = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )
variance[degree] = np.mean( np.var(y_pred, axis=1, keepdims=True) )
print('Polynomial degree:', degree)
print('Error:', error[degree])
print('Bias^2:', bias[degree])
print('Var:', variance[degree])
print('{} >= {} + {} = {}'.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))

plt.plot(polydegree, error, label='Error')
plt.plot(polydegree, bias, label='bias')
plt.plot(polydegree, variance, label='Variance')
plt.legend()
plt.show()

Summing up
The bias-variance tradeoff summarizes the fundamental tension in machine
learning, particularly supervised learning, between the complexity of a model
and the amount of training data needed to train it. Since data is often limited,
in practice it is often useful to use a less-complex model with higher bias, that is
a model whose asymptotic performance is worse than another model because
it is easier to train and less sensitive to sampling noise arising from having a
finite-sized training dataset (smaller variance).

The above equations tell us that in order to minimize the expected test error,
we need to select a statistical learning method that simultaneously achieves low
variance and low bias. Note that variance is inherently a nonnegative quantity,
and squared bias is also nonnegative. Hence, we see that the expected test MSE
can never lie below V ar(ϵ), the irreducible error.

What do we mean by the variance and bias of a statistical learning method?
The variance refers to the amount by which our model would change if we
estimated it using a different training data set. Since the training data are used
to fit the statistical learning method, different training data sets will result in a
different estimate. But ideally the estimate for our model should not vary too
much between training sets. However, if a method has high variance then small
changes in the training data can result in large changes in the model. In general,
more flexible statistical methods have higher variance.

You may also find this recent article of interest.
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Another Example from Scikit-Learn’s Repository
"""
============================
Underfitting vs. Overfitting
============================

This example demonstrates the problems of underfitting and overfitting and
how we can use linear regression with polynomial features to approximate
nonlinear functions. The plot shows the function that we want to approximate,
which is a part of the cosine function. In addition, the samples from the
real function and the approximations of different models are displayed. The
models have polynomial features of different degrees. We can see that a
linear function (polynomial with degree 1) is not sufficient to fit the
training samples. This is called **underfitting**. A polynomial of degree 4
approximates the true function almost perfectly. However, for higher degrees
the model will **overfit** the training data, i.e. it learns the noise of the
training data.
We evaluate quantitatively **overfitting** / **underfitting** by using
cross-validation. We calculate the mean squared error (MSE) on the validation
set, the higher, the less likely the model generalizes correctly from the
training data.
"""

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

def true_fun(X):
return np.cos(1.5 * np.pi * X)

np.random.seed(0)

n_samples = 30
degrees = [1, 4, 15]

X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1

plt.figure(figsize=(14, 5))
for i in range(len(degrees)):

ax = plt.subplot(1, len(degrees), i + 1)
plt.setp(ax, xticks=(), yticks=())

polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)

linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),

("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)

# Evaluate the models using crossvalidation
scores = cross_val_score(pipeline, X[:, np.newaxis], y,

scoring="neg_mean_squared_error", cv=10)
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X_test = np.linspace(0, 1, 100)
plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
plt.xlabel("x")
plt.ylabel("y")
plt.xlim((0, 1))
plt.ylim((-2, 2))
plt.legend(loc="best")
plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(

degrees[i], -scores.mean(), scores.std()))
plt.show()

Various steps in cross-validation
When the repetitive splitting of the data set is done randomly, samples may
accidently end up in a fast majority of the splits in either training or test set.
Such samples may have an unbalanced influence on either model building or
prediction evaluation. To avoid this k-fold cross-validation structures the data
splitting. The samples are divided into k more or less equally sized exhaustive
and mutually exclusive subsets. In turn (at each split) one of these subsets plays
the role of the test set while the union of the remaining subsets constitutes the
training set. Such a splitting warrants a balanced representation of each sample
in both training and test set over the splits. Still the division into the k subsets
involves a degree of randomness. This may be fully excluded when choosing
k = n. This particular case is referred to as leave-one-out cross-validation
(LOOCV).

How to set up the cross-validation for Ridge and/or Lasso
• Define a range of interest for the penalty parameter.

• Divide the data set into training and test set comprising samples {1, . . . , n}\
i and {i}, respectively.

• Fit the linear regression model by means of ridge estimation for each λ in
the grid using the training set, and the corresponding estimate of the error
variance σ2

−i(λ), as

β−i(λ) = (XT
−i,∗X−i,∗ + λIpp)−1XT

−i,∗y−i

• Evaluate the prediction performance of these models on the test set by
[yi,Xi,∗;β−i(λ),σ2

−i(λ)]. Or, by the prediction error |yi − Xi,∗β−i(λ)|,
the relative error, the error squared or the R2 score function.

• Repeat the first three steps such that each sample plays the role of the
test set once.
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• Average the prediction performances of the test sets at each grid point of
the penalty bias/parameter. It is an estimate of the prediction performance
of the model corresponding to this value of the penalty parameter on novel
data. It is defined as

1
n

n∑
i=1

log{L[yi, Xi,∗;β−i(λ),σ2
−i(λ)]}.

Cross-validation in brief
For the various values of k

1. shuffle the dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Decide which group to use as set for test data
(b) Take the remaining groups as a training data set
(c) Fit a model on the training set and evaluate it on the test set
(d) Retain the evaluation score and discard the model

4. Summarize the model using the sample of model evaluation scores

Code Example for Cross-validation and k-fold Cross-validation
The code here uses Ridge regression with cross-validation (CV) resampling and
k-fold CV in order to fit a specific polynomial.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import PolynomialFeatures

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.
np.random.seed(3155)

# Generate the data.
nsamples = 100
x = np.random.randn(nsamples)
y = 3*x**2 + np.random.randn(nsamples)

## Cross-validation on Ridge regression using KFold only

# Decide degree on polynomial to fit
poly = PolynomialFeatures(degree = 6)
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# Decide which values of lambda to use
nlambdas = 500
lambdas = np.logspace(-3, 5, nlambdas)

# Initialize a KFold instance
k = 5
kfold = KFold(n_splits = k)

# Perform the cross-validation to estimate MSE
scores_KFold = np.zeros((nlambdas, k))

i = 0
for lmb in lambdas:

ridge = Ridge(alpha = lmb)
j = 0
for train_inds, test_inds in kfold.split(x):

xtrain = x[train_inds]
ytrain = y[train_inds]

xtest = x[test_inds]
ytest = y[test_inds]

Xtrain = poly.fit_transform(xtrain[:, np.newaxis])
ridge.fit(Xtrain, ytrain[:, np.newaxis])

Xtest = poly.fit_transform(xtest[:, np.newaxis])
ypred = ridge.predict(Xtest)

scores_KFold[i,j] = np.sum((ypred - ytest[:, np.newaxis])**2)/np.size(ypred)

j += 1
i += 1

estimated_mse_KFold = np.mean(scores_KFold, axis = 1)

## Cross-validation using cross_val_score from sklearn along with KFold

# kfold is an instance initialized above as:
# kfold = KFold(n_splits = k)

estimated_mse_sklearn = np.zeros(nlambdas)
i = 0
for lmb in lambdas:

ridge = Ridge(alpha = lmb)

X = poly.fit_transform(x[:, np.newaxis])
estimated_mse_folds = cross_val_score(ridge, X, y[:, np.newaxis], scoring='neg_mean_squared_error', cv=kfold)

# cross_val_score return an array containing the estimated negative mse for every fold.
# we have to the the mean of every array in order to get an estimate of the mse of the model
estimated_mse_sklearn[i] = np.mean(-estimated_mse_folds)

i += 1

## Plot and compare the slightly different ways to perform cross-validation

plt.figure()

plt.plot(np.log10(lambdas), estimated_mse_sklearn, label = 'cross_val_score')
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plt.plot(np.log10(lambdas), estimated_mse_KFold, 'r--', label = 'KFold')

plt.xlabel('log10(lambda)')
plt.ylabel('mse')

plt.legend()

plt.show()

More examples on bootstrap and cross-validation and errors
# Common imports
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import mean_squared_error
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

infile = open(data_path("EoS.csv"),'r')

# Read the EoS data as csv file and organize the data into two arrays with density and energies
EoS = pd.read_csv(infile, names=('Density', 'Energy'))
EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')
EoS = EoS.dropna()
Energies = EoS['Energy']
Density = EoS['Density']
# The design matrix now as function of various polytrops

Maxpolydegree = 30
X = np.zeros((len(Density),Maxpolydegree))
X[:,0] = 1.0
testerror = np.zeros(Maxpolydegree)
trainingerror = np.zeros(Maxpolydegree)
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polynomial = np.zeros(Maxpolydegree)

trials = 100
for polydegree in range(1, Maxpolydegree):

polynomial[polydegree] = polydegree
for degree in range(polydegree):

X[:,degree] = Density**(degree/3.0)

# loop over trials in order to estimate the expectation value of the MSE
testerror[polydegree] = 0.0
trainingerror[polydegree] = 0.0
for samples in range(trials):

x_train, x_test, y_train, y_test = train_test_split(X, Energies, test_size=0.2)
model = LinearRegression(fit_intercept=False).fit(x_train, y_train)
ypred = model.predict(x_train)
ytilde = model.predict(x_test)
testerror[polydegree] += mean_squared_error(y_test, ytilde)
trainingerror[polydegree] += mean_squared_error(y_train, ypred)

testerror[polydegree] /= trials
trainingerror[polydegree] /= trials
print("Degree of polynomial: %3d"% polynomial[polydegree])
print("Mean squared error on training data: %.8f" % trainingerror[polydegree])
print("Mean squared error on test data: %.8f" % testerror[polydegree])

plt.plot(polynomial, np.log10(trainingerror), label='Training Error')
plt.plot(polynomial, np.log10(testerror), label='Test Error')
plt.xlabel('Polynomial degree')
plt.ylabel('log10[MSE]')
plt.legend()
plt.show()

Note that we kept the intercept column in the fitting here. This means that
we need to set the intercept in the call to the Scikit-Learn function as False.
Alternatively, we could have set up the design matrix X without the first column
of ones.

The same example but now with cross-validation
In this example we keep the intercept column again but add cross-validation in
order to estimate the best possible value of the means squared error.

# Common imports
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
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DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

infile = open(data_path("EoS.csv"),'r')

# Read the EoS data as csv file and organize the data into two arrays with density and energies
EoS = pd.read_csv(infile, names=('Density', 'Energy'))
EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')
EoS = EoS.dropna()
Energies = EoS['Energy']
Density = EoS['Density']
# The design matrix now as function of various polytrops

Maxpolydegree = 30
X = np.zeros((len(Density),Maxpolydegree))
X[:,0] = 1.0
estimated_mse_sklearn = np.zeros(Maxpolydegree)
polynomial = np.zeros(Maxpolydegree)
k =5
kfold = KFold(n_splits = k)

for polydegree in range(1, Maxpolydegree):
polynomial[polydegree] = polydegree
for degree in range(polydegree):

X[:,degree] = Density**(degree/3.0)
OLS = LinearRegression(fit_intercept=False)

# loop over trials in order to estimate the expectation value of the MSE
estimated_mse_folds = cross_val_score(OLS, X, Energies, scoring='neg_mean_squared_error', cv=kfold)

#[:, np.newaxis]
estimated_mse_sklearn[polydegree] = np.mean(-estimated_mse_folds)

plt.plot(polynomial, np.log10(estimated_mse_sklearn), label='Test Error')
plt.xlabel('Polynomial degree')
plt.ylabel('log10[MSE]')
plt.legend()
plt.show()
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Overarching aims of the exercises this week
This exercise deals with various mean values and variances in linear regression
method (here it may be useful to look up chapter 3, equation (3.8) of Trevor
Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical
Learning, Springer).

For more discussions on Ridge regression and calculation of expectation
values, Wessel van Wieringen’s article is highly recommended.

The assumption we have made is that there exists a continuous function f(x)
and a normal distributed error ε ∼ N(0, σ2) which describes our data

y = f(x) + ε

We then approximate this function f(x) with our model ỹ from the solution
of the linear regression equations (ordinary least squares OLS), that is our
function f is approximated by ỹ where we minimized (y − ỹ)2, with

ỹ = Xβ.

The matrix X is the so-called design or feature matrix.

*
Exercise 1: Expectation values for ordinary least squares expressions

Show that the expectation value of y for a given element i

E(yi) =
∑

j

xijβj = Xi,∗ β,

and that its variance is
Var(yi) = σ2.

Hence, yi ∼ N(Xi,∗ β, σ2), that is y follows a normal distribution with mean
value Xβ and variance σ2.

With the OLS expressions for the optimal parameters β̂ show that

E(β̂) = β.

Show finally that the variance of β is

Var(β̂) = σ2 (XT X)−1.

We can use the last expression when we define a so-called confidence interval
for the parameters β. A given parameter βj is given by the diagonal matrix
element of the above matrix.
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*
Exercise 2: Expectation values for Ridge regression

Show that
E
[
β̂Ridge] = (XT X + λIpp)−1(X⊤X)β.

We see clearly that E
[
β̂Ridge] ̸= E

[
β̂OLS] for any λ > 0.

Show also that the variance is

Var[β̂Ridge] = σ2[XT X + λI]−1XT X{[X⊤X + λI]−1}T ,

and it is easy to see that if the parameter λ goes to infinity then the variance of
the Ridge parameters β goes to zero.

*
Exercise 3: Bias-Variance tradeoff

The aim of the exercises is to derive the equations for the bias-variance
tradeoff to be used in project 1 as well as testing this for a simpler function
using the bootstrap method.

Consider a dataset L consisting of the data XL = {(yj ,xj), j = 0 . . . n − 1}.
We assume that the true data is generated from a noisy model

y = f(x) + ϵ.

Here ϵ is normally distributed with mean zero and standard deviation σ2.
In our derivation of the ordinary least squares method we defined an approx-

imation to the function f in terms of the parameters β and the design matrix
X which embody our model, that is ỹ = Xβ.

The parameters β are in turn found by optimizing the mean squared error
via the so-called cost function

C(X,β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = E
[
(y − ỹ)2] .

Here the expected value E is the sample value.
Show that you can rewrite this in terms of a term which contains the variance

of the model itself (the so-called variance term), a term which measures the
deviation from the true data and the mean value of the model (the bias term)
and finally the variance of the noise. That is, show that

E
[
(y − ỹ)2] = Bias[ỹ] + var[ỹ] + σ2,

with
Bias[ỹ] = E

[
(y − E [ỹ])2

]
,

and
var[ỹ] = E

[
(ỹ − E [ỹ])2

]
= 1

n

∑
i

(ỹi − E [ỹ])2.
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Explain what the terms mean and discuss their interpretations.
Perform then a bias-variance analysis of a simple one-dimensional (or other

models of your choice) function by studying the MSE value as function of the
complexity of your model. Use ordinary least squares only.

Discuss the bias and variance trade-off as function of your model complexity
(the degree of the polynomial) and the number of data points, and possibly also
your training and test data using the bootstrap resampling method. You can fol-
low the code example in the jupyter-book at https://compphysics.github.io/
MachineLearning/doc/LectureNotes/_build/html/chapter3.html#the-bias-variance-tradeoff.
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