
Data Analysis and Machine Learning:
Logistic Regression and Gradient

Methods

Morten Hjorth-Jensen1,2

1Department of Physics and Center for Computing in Science Education, University of Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams and National Superconducting Cyclotron Laboratory, Michigan State University, USA

November 6, 12 and 13, 2023

Logistic Regression
In linear regression our main interest was centered on learning the coefficients of
a functional fit (say a polynomial) in order to be able to predict the response of a
continuous variable on some unseen data. The fit to the continuous variable yi is
based on some independent variables xi. Linear regression resulted in analytical
expressions for standard ordinary Least Squares or Ridge regression (in terms of
matrices to invert) for several quantities, ranging from the variance and thereby
the confidence intervals of the parameters β to the mean squared error. If we can
invert the product of the design matrices, linear regression gives then a simple
recipe for fitting our data.

Classification problems
Classification problems, however, are concerned with outcomes taking the form
of discrete variables (i.e. categories). We may for example, on the basis of
DNA sequencing for a number of patients, like to find out which mutations are
important for a certain disease; or based on scans of various patients’ brains,
figure out if there is a tumor or not; or given a specific physical system, we’d like
to identify its state, say whether it is an ordered or disordered system (typical
situation in solid state physics); or classify the status of a patient, whether
she/he has a stroke or not and many other similar situations.

The most common situation we encounter when we apply logistic regression
is that of two possible outcomes, normally denoted as a binary outcome, true or
false, positive or negative, success or failure etc.

© 1999-2023, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

Optimization and Deep learning
Logistic regression will also serve as our stepping stone towards neural network
algorithms and supervised deep learning. For logistic learning, the minimization
of the cost function leads to a non-linear equation in the parameters β. The
optimization of the problem calls therefore for minimization algorithms. This
forms the bottle neck of all machine learning algorithms, namely how to find
reliable minima of a multi-variable function. This leads us to the family of
gradient descent methods. The latter are the working horses of basically all
modern machine learning algorithms.

We note also that many of the topics discussed here on logistic regression
are also commonly used in modern supervised Deep Learning models, as we will
see later.

Basics
We consider the case where the dependent variables, also called the responses or
the outcomes, yi are discrete and only take values from k = 0, . . . , K − 1 (i.e. K
classes).

The goal is to predict the output classes from the design matrix X ∈ Rn×p

made of n samples, each of which carries p features or predictors. The primary
goal is to identify the classes to which new unseen samples belong.

Let us specialize to the case of two classes only, with outputs yi = 0 and
yi = 1. Our outcomes could represent the status of a credit card user that could
default or not on her/his credit card debt. That is

yi =
[
0 no
1 yes

]
.

Linear classifier
Before moving to the logistic model, let us try to use our linear regression model
to classify these two outcomes. We could for example fit a linear model to the
default case if yi > 0.5 and the no default case yi ≤ 0.5.

We would then have our weighted linear combination, namely

y = XTβ + ϵ, (1)

where y is a vector representing the possible outcomes, X is our n × p design
matrix and β represents our estimators/predictors.

Some selected properties
The main problem with our function is that it takes values on the entire real axis.
In the case of logistic regression, however, the labels yi are discrete variables. A
typical example is the credit card data discussed below here, where we can set
the state of defaulting the debt to yi = 1 and not to yi = 0 for one the persons
in the data set (see the full example below).

2

One simple way to get a discrete output is to have sign functions that map
the output of a linear regressor to values {0, 1}, f(si) = sign(si) = 1 if si ≥ 0
and 0 if otherwise. We will encounter this model in our first demonstration of
neural networks.

Historically it is called the perceptron model in the machine learning
literature. This model is extremely simple. However, in many cases it is more
favorable to use a “soft" classifier that outputs the probability of a given category.
This leads us to the logistic function.

Simple example
The following example on data for coronary heart disease (CHD) as function of
age may serve as an illustration. In the code here we read and plot whether a
person has had CHD (output = 1) or not (output = 0). This ouput is plotted
the person’s against age. Clearly, the figure shows that attempting to make a
standard linear regression fit may not be very meaningful.

Common imports
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import mean_squared_error
from IPython.display import display
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

infile = open(data_path("chddata.csv"),'r')

3

Read the chd data as csv file and organize the data into arrays with age group, age, and chd
chd = pd.read_csv(infile, names=('ID', 'Age', 'Agegroup', 'CHD'))
chd.columns = ['ID', 'Age', 'Agegroup', 'CHD']
output = chd['CHD']
age = chd['Age']
agegroup = chd['Agegroup']
numberID = chd['ID']
display(chd)

plt.scatter(age, output, marker='o')
plt.axis([18,70.0,-0.1, 1.2])
plt.xlabel(r'Age')
plt.ylabel(r'CHD')
plt.title(r'Age distribution and Coronary heart disease')
plt.show()

Plotting the mean value for each group
What we could attempt however is to plot the mean value for each group.

agegroupmean = np.array([0.1, 0.133, 0.250, 0.333, 0.462, 0.625, 0.765, 0.800])
group = np.array([1, 2, 3, 4, 5, 6, 7, 8])
plt.plot(group, agegroupmean, "r-")
plt.axis([0,9,0, 1.0])
plt.xlabel(r'Age group')
plt.ylabel(r'CHD mean values')
plt.title(r'Mean values for each age group')
plt.show()

We are now trying to find a function f(y|x), that is a function which gives
us an expected value for the output y with a given input x. In standard linear
regression with a linear dependence on x, we would write this in terms of our
model

f(yi|xi) = β0 + β1xi.

This expression implies however that f(yi|xi) could take any value from
minus infinity to plus infinity. If we however let f(y|y) be represented by the
mean value, the above example shows us that we can constrain the function to
take values between zero and one, that is we have 0 ≤ f(yi|xi) ≤ 1. Looking
at our last curve we see also that it has an S-shaped form. This leads us to a
very popular model for the function f , namely the so-called Sigmoid function or
logistic model. We will consider this function as representing the probability for
finding a value of yi with a given xi.

The logistic function
Another widely studied model, is the so-called perceptron model, which is an
example of a “hard classification” model. We will encounter this model when we
discuss neural networks as well. Each datapoint is deterministically assigned to
a category (i.e yi = 0 or yi = 1). In many cases, and the coronary heart disease
data forms one of many such examples, it is favorable to have a “soft” classifier

4

that outputs the probability of a given category rather than a single value. For
example, given xi, the classifier outputs the probability of being in a category
k. Logistic regression is the most common example of a so-called soft classifier.
In logistic regression, the probability that a data point xi belongs to a category
yi = {0, 1} is given by the so-called logit function (or Sigmoid) which is meant
to represent the likelihood for a given event,

p(t) = 1
1 + exp−t

= exp t

1 + expt
.

Note that 1 − p(t) = p(−t).

Examples of likelihood functions used in logistic regression
and nueral networks
The following code plots the logistic function, the step function and other
functions we will encounter from here and on.

"""The sigmoid function (or the logistic curve) is a
function that takes any real number, z, and outputs a number (0,1).
It is useful in neural networks for assigning weights on a relative scale.
The value z is the weighted sum of parameters involved in the learning algorithm."""

import numpy
import matplotlib.pyplot as plt
import math as mt

z = numpy.arange(-5, 5, .1)
sigma_fn = numpy.vectorize(lambda z: 1/(1+numpy.exp(-z)))
sigma = sigma_fn(z)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(z, sigma)
ax.set_ylim([-0.1, 1.1])
ax.set_xlim([-5,5])
ax.grid(True)
ax.set_xlabel('z')
ax.set_title('sigmoid function')

plt.show()

"""Step Function"""
z = numpy.arange(-5, 5, .02)
step_fn = numpy.vectorize(lambda z: 1.0 if z >= 0.0 else 0.0)
step = step_fn(z)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(z, step)
ax.set_ylim([-0.5, 1.5])
ax.set_xlim([-5,5])
ax.grid(True)
ax.set_xlabel('z')
ax.set_title('step function')

5

plt.show()

"""tanh Function"""
z = numpy.arange(-2*mt.pi, 2*mt.pi, 0.1)
t = numpy.tanh(z)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(z, t)
ax.set_ylim([-1.0, 1.0])
ax.set_xlim([-2*mt.pi,2*mt.pi])
ax.grid(True)
ax.set_xlabel('z')
ax.set_title('tanh function')

plt.show()

Two parameters
We assume now that we have two classes with yi either 0 or 1. Furthermore we
assume also that we have only two parameters β in our fitting of the Sigmoid
function, that is we define probabilities

p(yi = 1|xi,β) = exp (β0 + β1xi)
1 + exp (β0 + β1xi)

,

p(yi = 0|xi,β) = 1 − p(yi = 1|xi,β),

where β are the weights we wish to extract from data, in our case β0 and β1.
Note that we used

p(yi = 0|xi,β) = 1 − p(yi = 1|xi,β).

Maximum likelihood
In order to define the total likelihood for all possible outcomes from a dataset
D = {(yi, xi)}, with the binary labels yi ∈ {0, 1} and where the data points
are drawn independently, we use the so-called Maximum Likelihood Estimation
(MLE) principle. We aim thus at maximizing the probability of seeing the
observed data. We can then approximate the likelihood in terms of the product
of the individual probabilities of a specific outcome yi, that is

P (D|β) =
n∏

i=1
[p(yi = 1|xi,β)]yi [1 − p(yi = 1|xi,β))]1−yi

from which we obtain the log-likelihood and our cost/loss function

C(β) =
n∑

i=1
(yi log p(yi = 1|xi,β) + (1 − yi) log [1 − p(yi = 1|xi,β))]) .

6

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

The cost function rewritten
Reordering the logarithms, we can rewrite the cost/loss function as

C(β) =
n∑

i=1
(yi(β0 + β1xi) − log (1 + exp (β0 + β1xi))) .

The maximum likelihood estimator is defined as the set of parameters that
maximize the log-likelihood where we maximize with respect to β. Since the
cost (error) function is just the negative log-likelihood, for logistic regression we
have that

C(β) = −
n∑

i=1
(yi(β0 + β1xi) − log (1 + exp (β0 + β1xi))) .

This equation is known in statistics as the cross entropy. Finally, we note that
just as in linear regression, in practice we often supplement the cross-entropy
with additional regularization terms, usually L1 and L2 regularization as we did
for Ridge and Lasso regression.

Minimizing the cross entropy
The cross entropy is a convex function of the weights β and, therefore, any local
minimizer is a global minimizer.

Minimizing this cost function with respect to the two parameters β0 and β1
we obtain

∂C(β)
∂β0

= −
n∑

i=1

(
yi − exp (β0 + β1xi)

1 + exp (β0 + β1xi)

)
,

and
∂C(β)
∂β1

= −
n∑

i=1

(
yixi − xi

exp (β0 + β1xi)
1 + exp (β0 + β1xi)

)
.

A more compact expression
Let us now define a vector y with n elements yi, an n × p matrix X which
contains the xi values and a vector p of fitted probabilities p(yi|xi,β). We can
rewrite in a more compact form the first derivative of cost function as

∂C(β)
∂β

= −XT (y − p) .

If we in addition define a diagonal matrix W with elements p(yi|xi,β)(1 −
p(yi|xi,β), we can obtain a compact expression of the second derivative as

∂2C(β)
∂β∂βT

= XTWX.

7

Extending to more predictors
Within a binary classification problem, we can easily expand our model to include
multiple predictors. Our ratio between likelihoods is then with p predictors

log p(βx)
1 − p(βx) = β0 + β1x1 + β2x2 + · · · + βpxp.

Here we defined x = [1, x1, x2, . . . , xp] and β = [β0, β1, . . . , βp] leading to

p(βx) = exp (β0 + β1x1 + β2x2 + · · · + βpxp)
1 + exp (β0 + β1x1 + β2x2 + · · · + βpxp) .

Including more classes
Till now we have mainly focused on two classes, the so-called binary system.
Suppose we wish to extend to K classes. Let us for the sake of simplicity assume
we have only two predictors. We have then following model

log p(C = 1|x)
p(K|x) = β10 + β11x1,

and
log p(C = 2|x)

p(K|x) = β20 + β21x1,

and so on till the class C = K − 1 class

log p(C = K − 1|x)
p(K|x) = β(K−1)0 + β(K−1)1x1,

and the model is specified in term of K − 1 so-called log-odds or logit
transformations.

More classes
In our discussion of neural networks we will encounter the above again in terms
of a slightly modified function, the so-called Softmax function.

The softmax function is used in various multiclass classification methods, such
as multinomial logistic regression (also known as softmax regression), multiclass
linear discriminant analysis, naive Bayes classifiers, and artificial neural networks.
Specifically, in multinomial logistic regression and linear discriminant analysis,
the input to the function is the result of K distinct linear functions, and the
predicted probability for the k-th class given a sample vector x and a weighting
vector β is (with two predictors):

p(C = k|x) = exp (βk0 + βk1x1)
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

.

8

It is easy to extend to more predictors. The final class is

p(C = K|x) = 1
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

,

and they sum to one. Our earlier discussions were all specialized to the case
with two classes only. It is easy to see from the above that what we derived
earlier is compatible with these equations.

To find the optimal parameters we would typically use a gradient descent
method. Newton’s method and gradient descent methods are discussed in the
material on optimization methods.

Friday September 23
Searching for Optimal Regularization Parameters λ

In project 1, when using Ridge and Lasso regression, we end up searching for
the optimal parameter λ which minimizes our selected scores (MSE or R2 values
for example). The brute force approach, as discussed in the code here for Ridge
regression, consists in evaluating the MSE as function of different λ values. Based
on these calculations, one tries then to determine the value of the hyperparameter
λ which results in optimal scores (for example the smallest MSE or an R2 = 1).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import linear_model

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

A seed just to ensure that the random numbers are the same for every run.
Useful for eventual debugging.
np.random.seed(2021)

n = 100
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((n,Maxpolydegree-1))

for degree in range(1,Maxpolydegree): #No intercept column
X[:,degree-1] = x**(degree)

We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Decide which values of lambda to use
nlambdas = 500
MSERidgePredict = np.zeros(nlambdas)
lambdas = np.logspace(-4, 2, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]

9

https://compphysics.github.io/MachineLearning/doc/pub/Splines/html/Splines-bs.html

RegRidge = linear_model.Ridge(lmb)
RegRidge.fit(X_train,y_train)
ypredictRidge = RegRidge.predict(X_test)
MSERidgePredict[i] = MSE(y_test,ypredictRidge)

Now plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSERidgePredict, 'g--', label = 'MSE SL Ridge Test')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()

Here we have performed a rather data greedy calculation as function of the
regularization parameter λ. There is no resampling here. The latter can easily
be added by employing the function RidgeCV instead of just calling the Ridge
function. For RidgeCV we need to pass the array of λ values. By inspecting the
figure we can in turn determine which is the optimal regularization parameter.
This becomes however less functional in the long run.

Grid Search
An alternative is to use the so-called grid search functionality included with the
library Scikit-Learn, as demonstrated for the same example here.

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

A seed just to ensure that the random numbers are the same for every run.
Useful for eventual debugging.
np.random.seed(2021)

n = 100
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((n,Maxpolydegree-1))

for degree in range(1,Maxpolydegree): #No intercept column
X[:,degree-1] = x**(degree)

We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Decide which values of lambda to use

10

nlambdas = 10
lambdas = np.logspace(-4, 2, nlambdas)
create and fit a ridge regression model, testing each alpha
model = Ridge()
gridsearch = GridSearchCV(estimator=model, param_grid=dict(alpha=lambdas))
gridsearch.fit(X_train, y_train)
print(gridsearch)
ypredictRidge = gridsearch.predict(X_test)
summarize the results of the grid search
print(f"Best estimated lambda-value: {gridsearch.best_estimator_.alpha}")
print(f"MSE score: {MSE(y_test,ypredictRidge)}")
print(f"R2 score: {R2(y_test,ypredictRidge)}")

By default the grid search function includes cross validation with five folds.
The Scikit-Learn documentation contains more information on how to set the
different parameters.

If we take out the random noise, running the above codes results in λ = 0
yielding the best fit.

Randomized Grid Search
An alternative to the above manual grid set up, is to use a random search where
the parameters are tuned from a random distribution (uniform below) for a fixed
number of iterations. A model is constructed and evaluated for each combination
of chosen parameters. We repeat the previous example but now with a random
search. Note that values of λ are now limited to be within x ∈ [0, 1]. This
domain may not be the most relevant one for the specific case under study.

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
from scipy.stats import uniform as randuniform
from sklearn.model_selection import RandomizedSearchCV

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

A seed just to ensure that the random numbers are the same for every run.
Useful for eventual debugging.
np.random.seed(2021)

n = 100
x = np.random.rand(n)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.randn(n)

Maxpolydegree = 5
X = np.zeros((n,Maxpolydegree-1))

11

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

for degree in range(1,Maxpolydegree): #No intercept column
X[:,degree-1] = x**(degree)

We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

param_grid = {'alpha': randuniform()}
create and fit a ridge regression model, testing each alpha
model = Ridge()
gridsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
gridsearch.fit(X_train, y_train)
print(gridsearch)
ypredictRidge = gridsearch.predict(X_test)
summarize the results of the grid search
print(f"Best estimated lambda-value: {gridsearch.best_estimator_.alpha}")
print(f"MSE score: {MSE(y_test,ypredictRidge)}")
print(f"R2 score: {R2(y_test,ypredictRidge)}")

Wisconsin Cancer Data
We show here how we can use a simple regression case on the breast cancer data
using Logistic regression as our algorithm for classification.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression

Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
Logistic Regression
logreg = LogisticRegression(solver='lbfgs')
logreg.fit(X_train, y_train)
print("Test set accuracy with Logistic Regression: {:.2f}".format(logreg.score(X_test,y_test)))

Using the correlation matrix
In addition to the above scores, we could also study the covariance (and the
correlation matrix). We use Pandas to compute the correlation matrix.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
cancer = load_breast_cancer()
import pandas as pd
Making a data frame
cancerpd = pd.DataFrame(cancer.data, columns=cancer.feature_names)

12

fig, axes = plt.subplots(15,2,figsize=(10,20))
malignant = cancer.data[cancer.target == 0]
benign = cancer.data[cancer.target == 1]
ax = axes.ravel()

for i in range(30):
_, bins = np.histogram(cancer.data[:,i], bins =50)
ax[i].hist(malignant[:,i], bins = bins, alpha = 0.5)
ax[i].hist(benign[:,i], bins = bins, alpha = 0.5)
ax[i].set_title(cancer.feature_names[i])
ax[i].set_yticks(())

ax[0].set_xlabel("Feature magnitude")
ax[0].set_ylabel("Frequency")
ax[0].legend(["Malignant", "Benign"], loc ="best")
fig.tight_layout()
plt.show()

import seaborn as sns
correlation_matrix = cancerpd.corr().round(1)
use the heatmap function from seaborn to plot the correlation matrix
annot = True to print the values inside the square
plt.figure(figsize=(15,8))
sns.heatmap(data=correlation_matrix, annot=True)
plt.show()

Discussing the correlation data
In the above example we note two things. In the first plot we display the overlap
of benign and malignant tumors as functions of the various features in the
Wisconsing breast cancer data set. We see that for some of the features we can
distinguish clearly the benign and malignant cases while for other features we
cannot. This can point to us which features may be of greater interest when we
wish to classify a benign or not benign tumour.

In the second figure we have computed the so-called correlation matrix, which
in our case with thirty features becomes a 30 × 30 matrix.

We constructed this matrix using pandas via the statements

cancerpd = pd.DataFrame(cancer.data, columns=cancer.feature_names)

and then

correlation_matrix = cancerpd.corr().round(1)

Diagonalizing this matrix we can in turn say something about which features
are of relevance and which are not. This leads us to the classical Principal
Component Analysis (PCA) theorem with applications. This will be discussed
later this semester (week 43).

13

https://compphysics.github.io/MachineLearning/doc/pub/week43/html/week43-bs.html

Other measures in classification studies: Cancer Data again
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression

Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
Logistic Regression
logreg = LogisticRegression(solver='lbfgs')
logreg.fit(X_train, y_train)

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
#Cross validation
accuracy = cross_validate(logreg,X_test,y_test,cv=10)['test_score']
print(accuracy)
print("Test set accuracy with Logistic Regression: {:.2f}".format(logreg.score(X_test,y_test)))

import scikitplot as skplt
y_pred = logreg.predict(X_test)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
plt.show()
y_probas = logreg.predict_proba(X_test)
skplt.metrics.plot_roc(y_test, y_probas)
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
plt.show()

Optimization, the central part of any Machine Learning
algortithm
Almost every problem in machine learning and data science starts with a dataset
X, a model g(β), which is a function of the parameters β and a cost function
C(X, g(β)) that allows us to judge how well the model g(β) explains the obser-
vations X. The model is fit by finding the values of β that minimize the cost
function. Ideally we would be able to solve for β analytically, however this is
not possible in general and we must use some approximative/numerical method
to compute the minimum.

Revisiting our Logistic Regression case
In our discussion on Logistic Regression we studied the case of two classes, with
yi either 0 or 1. Furthermore we assumed also that we have only two parameters
β in our fitting, that is we defined probabilities

14

p(yi = 1|xi,β) = exp (β0 + β1xi)
1 + exp (β0 + β1xi)

,

p(yi = 0|xi,β) = 1 − p(yi = 1|xi,β),

where β are the weights we wish to extract from data, in our case β0 and β1.

The equations to solve
Our compact equations used a definition of a vector y with n elements yi, an
n×p matrix X which contains the xi values and a vector p of fitted probabilities
p(yi|xi,β). We rewrote in a more compact form the first derivative of the cost
function as

∂C(β)
∂β

= −XT (y − p) .

If we in addition define a diagonal matrix W with elements p(yi|xi,β)(1 −
p(yi|xi,β), we can obtain a compact expression of the second derivative as

∂2C(β)
∂β∂βT

= XTWX.

This defines what is called the Hessian matrix.

Solving using Newton-Raphson’s method
If we can set up these equations, Newton-Raphson’s iterative method is normally
the method of choice. It requires however that we can compute in an efficient
way the matrices that define the first and second derivatives.

Our iterative scheme is then given by

βnew = βold −
(

∂2C(β)
∂β∂βT

)−1

βold
×

(
∂C(β)

∂β

)
βold

,

or in matrix form as

βnew = βold −
(
XTWX

)−1 ×
(
−XT (y − p)

)
βold .

The right-hand side is computed with the old values of β.
If we can compute these matrices, in particular the Hessian, the above is

often the easiest method to implement.

15

Brief reminder on Newton-Raphson’s method
Let us quickly remind ourselves how we derive the above method.

Perhaps the most celebrated of all one-dimensional root-finding routines
is Newton’s method, also called the Newton-Raphson method. This method
requires the evaluation of both the function f and its derivative f ′ at arbitrary
points. If you can only calculate the derivative numerically and/or your function
is not of the smooth type, we normally discourage the use of this method.

The equations
The Newton-Raphson formula consists geometrically of extending the tangent
line at a current point until it crosses zero, then setting the next guess to the
abscissa of that zero-crossing. The mathematics behind this method is rather
simple. Employing a Taylor expansion for x sufficiently close to the solution s,
we have

f(s) = 0 = f(x) + (s − x)f ′(x) + (s − x)2

2 f ′′(x) +

For small enough values of the function and for well-behaved functions, the
terms beyond linear are unimportant, hence we obtain

f(x) + (s − x)f ′(x) ≈ 0,

yielding
s ≈ x − f(x)

f ′(x) .

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn − f(xn)
f ′(xn) .

Simple geometric interpretation
The above is Newton-Raphson’s method. It has a simple geometric interpretation,
namely xn+1 is the point where the tangent from (xn, f(xn)) crosses the x-axis.
Close to the solution, Newton-Raphson converges fast to the desired result.
However, if we are far from a root, where the higher-order terms in the series
are important, the Newton-Raphson formula can give grossly inaccurate results.
For instance, the initial guess for the root might be so far from the true root as
to let the search interval include a local maximum or minimum of the function.
If an iteration places a trial guess near such a local extremum, so that the first
derivative nearly vanishes, then Newton-Raphson may fail totally

16

Extending to more than one variable
Newton’s method can be generalized to systems of several non-linear equations
and variables. Consider the case with two equations

f1(x1, x2) = 0
f2(x1, x2) = 0,

which we Taylor expand to obtain

0 = f1(x1 + h1, x2 + h2) = f1(x1, x2) + h1∂f1/∂x1 + h2∂f1/∂x2 + . . .
0 = f2(x1 + h1, x2 + h2) = f2(x1, x2) + h1∂f2/∂x1 + h2∂f2/∂x2 + . . .

.

Defining the Jacobian matrix J we have

J =
(

∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

)
,

we can rephrase Newton’s method as(
xn+1

1
xn+1

2

)
=

(
xn

1
xn

2

)
+

(
hn

1
hn

2

)
,

where we have defined(
hn

1
hn

2

)
= −J−1

(
f1(xn

1 , xn
2)

f2(xn
1 , xn

2)

)
.

We need thus to compute the inverse of the Jacobian matrix and it is to
understand that difficulties may arise in case J is nearly singular.

It is rather straightforward to extend the above scheme to systems of more
than two non-linear equations. In our case, the Jacobian matrix is given by the
Hessian that represents the second derivative of cost function.

Steepest descent
The basic idea of gradient descent is that a function F (x), x ≡ (x1, · · · , xn),
decreases fastest if one goes from x in the direction of the negative gradient
−∇F (x).

It can be shown that if

xk+1 = xk − γk∇F (xk),

with γk > 0.
For γk small enough, then F (xk+1) ≤ F (xk). This means that for a suffi-

ciently small γk we are always moving towards smaller function values, i.e a
minimum.

17

More on Steepest descent
The previous observation is the basis of the method of steepest descent, which is
also referred to as just gradient descent (GD). One starts with an initial guess
x0 for a minimum of F and computes new approximations according to

xk+1 = xk − γk∇F (xk), k ≥ 0.

The parameter γk is often referred to as the step length or the learning rate
within the context of Machine Learning.

The ideal
Ideally the sequence {xk}k=0 converges to a global minimum of the function F .
In general we do not know if we are in a global or local minimum. In the special
case when F is a convex function, all local minima are also global minima, so in
this case gradient descent can converge to the global solution. The advantage of
this scheme is that it is conceptually simple and straightforward to implement.
However the method in this form has some severe limitations:

In machine learing we are often faced with non-convex high dimensional
cost functions with many local minima. Since GD is deterministic we will get
stuck in a local minimum, if the method converges, unless we have a very good
intial guess. This also implies that the scheme is sensitive to the chosen initial
condition.

Note that the gradient is a function of x = (x1, · · · , xn) which makes it
expensive to compute numerically.

The sensitiveness of the gradient descent
The gradient descent method is sensitive to the choice of learning rate γk. This is
due to the fact that we are only guaranteed that F (xk+1) ≤ F (xk) for sufficiently
small γk. The problem is to determine an optimal learning rate. If the learning
rate is chosen too small the method will take a long time to converge and if it is
too large we can experience erratic behavior.

Many of these shortcomings can be alleviated by introducing randomness.
One such method is that of Stochastic Gradient Descent (SGD), see below.

Convex functions
Ideally we want our cost/loss function to be convex(concave).

First we give the definition of a convex set: A set C in Rn is said to be convex
if, for all x and y in C and all t ∈ (0, 1) , the point (1 − t)x + ty also belongs to
C. Geometrically this means that every point on the line segment connecting x
and y is in C as discussed below.

The convex subsets of R are the intervals of R. Examples of convex sets of
R2 are the regular polygons (triangles, rectangles, pentagons, etc...).

18

Convex function
Convex function: Let X ⊂ Rn be a convex set. Assume that the function
f : X → R is continuous, then f is said to be convex if f(tx1 + (1 − t)x2) ≤
tf(x1) + (1 − t)f(x2) for all x1, x2 ∈ X and for all t ∈ [0, 1]. If ≤ is replaced
with a strict inequaltiy in the definition, we demand x1 ̸= x2 and t ∈ (0, 1) then
f is said to be strictly convex. For a single variable function, convexity means
that if you draw a straight line connecting f(x1) and f(x2), the value of the
function on the interval [x1, x2] is always below the line as illustrated below.

Conditions on convex functions
In the following we state first and second-order conditions which ensures convexity
of a function f . We write Df to denote the domain of f , i.e the subset of Rn

where f is defined. For more details and proofs we refer to: S. Boyd and L.
Vandenberghe. Convex Optimization. Cambridge University Press.

First order condition. Suppose f is differentiable (i.e ∇f(x) is well defined
for all x in the domain of f). Then f is convex if and only if Df is a convex set
and f(y) ≥ f(x) + ∇f(x)T (y − x) holds for all x, y ∈ Df .

This condition means that for a convex function the first order Taylor
expansion (right hand side above) at any point a global under estimator of the
function. To convince yourself you can make a drawing of f(x) = x2 + 1 and
draw the tangent line to f(x) and note that it is always below the graph.

Second order condition. Assume that f is twice differentiable, i.e the Hessian
matrix exists at each point in Df . Then f is convex if and only if Df is a convex
set and its Hessian is positive semi-definite for all x ∈ Df . For a single-variable
function this reduces to f ′′(x) ≥ 0. Geometrically this means that f has
nonnegative curvature everywhere.

This condition is particularly useful since it gives us an procedure for de-
termining if the function under consideration is convex, apart from using the
definition.

More on convex functions
The next result is of great importance to us and the reason why we are going
on about convex functions. In machine learning we frequently have to minimize
a loss/cost function in order to find the best parameters for the model we are
considering.

Ideally we want the global minimum (for high-dimensional models it is hard
to know if we have local or global minimum). However, if the cost/loss function
is convex the following result provides invaluable information:

19

http://stanford.edu/boyd/cvxbook/
http://stanford.edu/boyd/cvxbook/

Any minimum is global for convex functions. Consider the problem of
finding x ∈ Rn such that f(x) is minimal, where f is convex and differentiable.
Then, any point x∗ that satisfies ∇f(x∗) = 0 is a global minimum.

This result means that if we know that the cost/loss function is convex and
we are able to find a minimum, we are guaranteed that it is a global minimum.

Some simple problems
1. Show that f(x) = x2 is convex for x ∈ R using the definition of convexity.

Hint: If you re-write the definition, f is convex if the following holds for all
x, y ∈ Df and any λ ∈ [0, 1] λf(x) + (1 − λ)f(y) − f(λx + (1 − λ)y) ≥ 0.

2. Using the second order condition show that the following functions are
convex on the specified domain.

• f(x) = ex is convex for x ∈ R.
• g(x) = − ln(x) is convex for x ∈ (0, ∞).

3. Let f(x) = x2 and g(x) = ex. Show that f(g(x)) and g(f(x)) is convex for
x ∈ R. Also show that if f(x) is any convex function than h(x) = ef(x) is
convex.

4. A norm is any function that satisfy the following properties

• f(αx) = |α|f(x) for all α ∈ R.
• f(x + y) ≤ f(x) + f(y)
• f(x) ≤ 0 for all x ∈ Rn with equality if and only if x = 0

Using the definition of convexity, try to show that a function satisfying the
properties above is convex (the third condition is not needed to show this).

Standard steepest descent
Before we proceed, we would like to discuss the approach called the standard
Steepest descent (different from the above steepest descent discussion), which
again leads to us having to be able to compute a matrix. It belongs to the class
of Conjugate Gradient methods (CG).

The success of the CG method for finding solutions of non-linear problems is
based on the theory of conjugate gradients for linear systems of equations. It
belongs to the class of iterative methods for solving problems from linear algebra
of the type

Ax = b.

In the iterative process we end up with a problem like

r = b − Ax,

where r is the so-called residual or error in the iterative process.
When we have found the exact solution, r = 0.

20

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Gradient method
The residual is zero when we reach the minimum of the quadratic equation

P (x) = 1
2x

TAx − xT b,

with the constraint that the matrix A is positive definite and symmetric.
This defines also the Hessian and we want it to be positive definite.

Steepest descent method
We denote the initial guess for x as x0. We can assume without loss of generality
that

x0 = 0,

or consider the system
Az = b − Ax0,

instead.

Steepest descent method
One can show that the solution x is also the unique minimizer of the quadratic

form
f(x) = 1

2x
TAx − xTx, x ∈ Rn.

This suggests taking the first basis vector r1 (see below for definition) to be the
gradient of f at x = x0, which equals

Ax0 − b,

and x0 = 0 it is equal −b.

Final expressions
We can compute the residual iteratively as

rk+1 = b − Axk+1,

which equals
b − A(xk + αkrk),

or
(b − Axk) − αkArk,

which gives

αk = rT
k rk

rT
k Ark

leading to the iterative scheme

xk+1 = xk + αkrk,

21

Steepest descent example
import numpy as np
import numpy.linalg as la

import scipy.optimize as sopt

import matplotlib.pyplot as pt
from mpl_toolkits.mplot3d import axes3d

def f(x):
return x[0]**2 + 3.0*x[1]**2

def df(x):
return np.array([2*x[0], 6*x[1]])

fig = pt.figure()
ax = fig.gca(projection="3d")

xmesh, ymesh = np.mgrid[-3:3:50j,-3:3:50j]
fmesh = f(np.array([xmesh, ymesh]))
ax.plot_surface(xmesh, ymesh, fmesh)

And then as countor plot

pt.axis("equal")
pt.contour(xmesh, ymesh, fmesh)
guesses = [np.array([2, 2./5])]

Find guesses

x = guesses[-1]
s = -df(x)

Run it!

def f1d(alpha):
return f(x + alpha*s)

alpha_opt = sopt.golden(f1d)
next_guess = x + alpha_opt * s
guesses.append(next_guess)
print(next_guess)

What happened?

pt.axis("equal")
pt.contour(xmesh, ymesh, fmesh, 50)
it_array = np.array(guesses)
pt.plot(it_array.T[0], it_array.T[1], "x-")

Note that we did only one iteration here. We can easily add more using our
previous guesses.

22

Conjugate gradient method
In the CG method we define so-called conjugate directions and two vectors s

and t are said to be conjugate if
sTAt = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors xi obeying the above criterion, namely

xT
i Axj = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner
product. Being conjugate is a symmetric relation: if s is conjugate to t, then t
is conjugate to s.

Conjugate gradient method
An example is given by the eigenvectors of the matrix

vT
i Avj = λvT

i vj ,

which is zero unless i = j.

Conjugate gradient method
Assume now that we have a symmetric positive-definite matrix A of size n × n.

At each iteration i + 1 we obtain the conjugate direction of a vector
xi+1 = xi + αipi.

We assume that pi is a sequence of n mutually conjugate directions. Then the pi

form a basis of Rn and we can expand the solution Ax = b in this basis, namely

x =
n∑

i=1
αipi.

Conjugate gradient method
The coefficients are given by

Ax =
n∑

i=1
αiApi = b.

Multiplying with pT
k from the left gives

pT
k Ax =

n∑
i=1

αip
T
k Api = pT

k b,

and we can define the coefficients αk as

αk = pT
k b

pT
k Apk

23

Conjugate gradient method and iterations
If we choose the conjugate vectors pk carefully, then we may not need all of

them to obtain a good approximation to the solution x. We want to regard the
conjugate gradient method as an iterative method. This will us to solve systems
where n is so large that the direct method would take too much time.

We denote the initial guess for x as x0. We can assume without loss of
generality that

x0 = 0,

or consider the system
Az = b − Ax0,

instead.

Conjugate gradient method
One can show that the solution x is also the unique minimizer of the quadratic

form
f(x) = 1

2x
TAx − xTx, x ∈ Rn.

This suggests taking the first basis vector p1 to be the gradient of f at x = x0,
which equals

Ax0 − b,

and x0 = 0 it is equal −b. The other vectors in the basis will be conjugate to
the gradient, hence the name conjugate gradient method.

Conjugate gradient method
Let rk be the residual at the k-th step:

rk = b − Axk.

Note that rk is the negative gradient of f at x = xk, so the gradient descent
method would be to move in the direction rk. Here, we insist that the directions
pk are conjugate to each other, so we take the direction closest to the gradient
rk under the conjugacy constraint. This gives the following expression

pk+1 = rk − pT
k Ark

pT
k Apk

pk.

Conjugate gradient method
We can also compute the residual iteratively as

rk+1 = b − Axk+1,

which equals
b − A(xk + αkpk),

24

or
(b − Axk) − αkApk,

which gives

rk+1 = rk − Apk,

Revisiting our first homework
We will use linear regression as a case study for the gradient descent methods.
Linear regression is a great test case for the gradient descent methods discussed
in the lectures since it has several desirable properties such as:

1. An analytical solution (recall homework set 1).

2. The gradient can be computed analytically.

3. The cost function is convex which guarantees that gradient descent con-
verges for small enough learning rates

We revisit an example similar to what we had in the first homework set. We
had a function of the type

x = 2*np.random.rand(m,1)
y = 4+3*x+np.random.randn(m,1)

with xi ∈ [0, 1] is chosen randomly using a uniform distribution. Additionally
we have a stochastic noise chosen according to a normal distribution N (′, ∞).
The linear regression model is given by

hβ(x) = y = β0 + β1x,

such that
yi = β0 + β1xi.

Gradient descent example
Let y = (y1, · · · , yn)T , y = (y1, · · · ,yn)T and β = (β0, β1)T

It is convenient to write y = Xβ where X ∈ R100×2 is the design matrix
given by (we keep the intercept here)

X ≡

1 x1
...

...
1 x100

 .

The cost/loss/risk function is given by (

C(β) = 1
n

||Xβ − y||22 = 1
n

100∑
i=1

[
(β0 + β1xi)2 − 2yi(β0 + β1xi) + y2

i

]
and we want to find β such that C(β) is minimized.

25

The derivative of the cost/loss function
Computing ∂C(β)/∂β0 and ∂C(β)/∂β1 we can show that the gradient can be
written as

∇βC(β) = 2
n

[∑100
i=1 (β0 + β1xi − yi)∑100

i=1 (xi(β0 + β1xi) − yixi)

]
= 2

n
XT (Xβ − y),

where X is the design matrix defined above.

The Hessian matrix
The Hessian matrix of C(β) is given by

H ≡

 ∂2C(β)
∂β2

0

∂2C(β)
∂β0∂β1

∂2C(β)
∂β0∂β1

∂2C(β)
∂β2

1

 = 2
n

XT X.

This result implies that C(β) is a convex function since the matrix XT X always
is positive semi-definite.

Simple program
We can now write a program that minimizes C(β) using the gradient descent
method with a constant learning rate γ according to

βk+1 = βk − γ∇βC(βk), k = 0, 1, · · ·

We can use the expression we computed for the gradient and let use a β0 be
chosen randomly and let γ = 0.001. Stop iterating when ||∇βC(βk)|| ≤ ϵ = 10−8.
Note that the code below does not include the latter stop criterion.

And finally we can compare our solution for β with the analytic result given
by β = (XT X)−1XT y.

Gradient Descent Example
Here our simple example

Importing various packages
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

the number of datapoints
n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

26

X = np.c_[np.ones((n,1)), x]
Hessian matrix
H = (2.0/n)* X.T @ X
Get the eigenvalues
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

beta_linreg = np.linalg.inv(X.T @ X) @ X.T @ y
print(beta_linreg)
beta = np.random.randn(2,1)

eta = 1.0/np.max(EigValues)
Niterations = 1000

for iter in range(Niterations):
gradient = (2.0/n)*X.T @ (X @ beta-y)
beta -= eta*gradient

print(beta)
xnew = np.array([[0],[2]])
xbnew = np.c_[np.ones((2,1)), xnew]
ypredict = xbnew.dot(beta)
ypredict2 = xbnew.dot(beta_linreg)
plt.plot(xnew, ypredict, "r-")
plt.plot(xnew, ypredict2, "b-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'x')
plt.ylabel(r'y')
plt.title(r'Gradient descent example')
plt.show()

And a corresponding example using scikit-learn
Importing various packages
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
beta_linreg = np.linalg.inv(X.T @ X) @ (X.T @ y)
print(beta_linreg)
sgdreg = SGDRegressor(max_iter = 50, penalty=None, eta0=0.1)
sgdreg.fit(x,y.ravel())
print(sgdreg.intercept_, sgdreg.coef_)

27

Gradient descent and Ridge
We have also discussed Ridge regression where the loss function contains a
regularized term given by the L2 norm of β,

Cridge(β) = 1
n

||Xβ − y||2 + λ||β||2, λ ≥ 0.

In order to minimize Cridge(β) using GD we adjust the gradient as follows

∇βCridge(β) = 2
n

[∑100
i=1 (β0 + β1xi − yi)∑100

i=1 (xi(β0 + β1xi) − yixi)

]
+2λ

[
β0
β1

]
= 2(1

n
XT (Xβ−y)+λβ).

We can easily extend our program to minimize Cridge(β) using gradient
descent and compare with the analytical solution given by

βridge =
(
XT X + nλI2×2

)−1
XT y.

The Hessian matrix for Ridge Regression
The Hessian matrix of Ridge Regression for our simple example is given by

H ≡

 ∂2C(β)
∂β2

0

∂2C(β)
∂β0∂β1

∂2C(β)
∂β0∂β1

∂2C(β)
∂β2

1

 = 2
n

XT X + 2λI.

This implies that the Hessian matrix is positive definite, hence the stationary
point is a minimum. Note that the Ridge cost function is convex being a sum of
two convex functions. Therefore, the stationary point is a global minimum of
this function.

Program example for gradient descent with Ridge Regres-
sion

from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

the number of datapoints
n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X

#Ridge parameter lambda
lmbda = 0.001
Id = n*lmbda* np.eye(XT_X.shape[0])

28

Hessian matrix
H = (2.0/n)* XT_X+2*lmbda* np.eye(XT_X.shape[0])
Get the eigenvalues
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

beta_linreg = np.linalg.inv(XT_X+Id) @ X.T @ y
print(beta_linreg)
Start plain gradient descent
beta = np.random.randn(2,1)

eta = 1.0/np.max(EigValues)
Niterations = 100

for iter in range(Niterations):
gradients = 2.0/n*X.T @ (X @ (beta)-y)+2*lmbda*beta
beta -= eta*gradients

print(beta)
ypredict = X @ beta
ypredict2 = X @ beta_linreg
plt.plot(x, ypredict, "r-")
plt.plot(x, ypredict2, "b-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'x')
plt.ylabel(r'y')
plt.title(r'Gradient descent example for Ridge')
plt.show()

Using gradient descent methods, limitations
• Gradient descent (GD) finds local minima of our function. Since

the GD algorithm is deterministic, if it converges, it will converge to a
local minimum of our cost/loss/risk function. Because in ML we are often
dealing with extremely rugged landscapes with many local minima, this
can lead to poor performance.

• GD is sensitive to initial conditions. One consequence of the local
nature of GD is that initial conditions matter. Depending on where one
starts, one will end up at a different local minima. Therefore, it is very
important to think about how one initializes the training process. This is
true for GD as well as more complicated variants of GD.

• Gradients are computationally expensive to calculate for large
datasets. In many cases in statistics and ML, the cost/loss/risk function
is a sum of terms, with one term for each data point. For example, in linear
regression, E ∝

∑n
i=1(yi −wT ·xi)2; for logistic regression, the square error

is replaced by the cross entropy. To calculate the gradient we have to sum
over all n data points. Doing this at every GD step becomes extremely

29

computationally expensive. An ingenious solution to this, is to calculate
the gradients using small subsets of the data called “mini batches”. This
has the added benefit of introducing stochasticity into our algorithm.

• GD is very sensitive to choices of learning rates. GD is extremely
sensitive to the choice of learning rates. If the learning rate is very small,
the training process take an extremely long time. For larger learning rates,
GD can diverge and give poor results. Furthermore, depending on what
the local landscape looks like, we have to modify the learning rates to
ensure convergence. Ideally, we would adaptively choose the learning rates
to match the landscape.

• GD treats all directions in parameter space uniformly. Another
major drawback of GD is that unlike Newton’s method, the learning rate
for GD is the same in all directions in parameter space. For this reason,
the maximum learning rate is set by the behavior of the steepest direction
and this can significantly slow down training. Ideally, we would like to
take large steps in flat directions and small steps in steep directions. Since
we are exploring rugged landscapes where curvatures change, this requires
us to keep track of not only the gradient but second derivatives. The
ideal scenario would be to calculate the Hessian but this proves to be too
computationally expensive.

• GD can take exponential time to escape saddle points, even with random
initialization. As we mentioned, GD is extremely sensitive to initial
condition since it determines the particular local minimum GD would
eventually reach. However, even with a good initialization scheme, through
the introduction of randomness, GD can still take exponential time to
escape saddle points.

Improving gradient descent with momentum
We discuss here some simple examples where we introduce what is called ’mem-
ory’about previous steps, or what is normally called momentum gradient descent.
The mathematics is explained below in connection with Stochastic gradient
descent.

from numpy import asarray
from numpy import arange
from numpy.random import rand
from numpy.random import seed
from matplotlib import pyplot

objective function
def objective(x):

return x**2.0

derivative of objective function
def derivative(x):

return x * 2.0

30

gradient descent algorithm
def gradient_descent(objective, derivative, bounds, n_iter, step_size):

track all solutions
solutions, scores = list(), list()
generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
run the gradient descent
for i in range(n_iter):

calculate gradient
gradient = derivative(solution)
take a step
solution = solution - step_size * gradient
evaluate candidate point
solution_eval = objective(solution)
store solution
solutions.append(solution)
scores.append(solution_eval)
report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))

return [solutions, scores]

seed the pseudo random number generator
seed(4)
define range for input
bounds = asarray([[-1.0, 1.0]])
define the total iterations
n_iter = 30
define the step size
step_size = 0.1
perform the gradient descent search
solutions, scores = gradient_descent(objective, derivative, bounds, n_iter, step_size)
sample input range uniformly at 0.1 increments
inputs = arange(bounds[0,0], bounds[0,1]+0.1, 0.1)
compute targets
results = objective(inputs)
create a line plot of input vs result
pyplot.plot(inputs, results)
plot the solutions found
pyplot.plot(solutions, scores, '.-', color='red')
show the plot
pyplot.show()

Same code but now with momentum gradient descent
from numpy import asarray
from numpy import arange
from numpy.random import rand
from numpy.random import seed
from matplotlib import pyplot

objective function
def objective(x):

return x**2.0

derivative of objective function
def derivative(x):

return x * 2.0

31

gradient descent algorithm
def gradient_descent(objective, derivative, bounds, n_iter, step_size, momentum):

track all solutions
solutions, scores = list(), list()
generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
keep track of the change
change = 0.0
run the gradient descent
for i in range(n_iter):

calculate gradient
gradient = derivative(solution)
calculate update
new_change = step_size * gradient + momentum * change
take a step
solution = solution - new_change
save the change
change = new_change
evaluate candidate point
solution_eval = objective(solution)
store solution
solutions.append(solution)
scores.append(solution_eval)
report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))

return [solutions, scores]

seed the pseudo random number generator
seed(4)
define range for input
bounds = asarray([[-1.0, 1.0]])
define the total iterations
n_iter = 30
define the step size
step_size = 0.1
define momentum
momentum = 0.3
perform the gradient descent search with momentum
solutions, scores = gradient_descent(objective, derivative, bounds, n_iter, step_size, momentum)
sample input range uniformly at 0.1 increments
inputs = arange(bounds[0,0], bounds[0,1]+0.1, 0.1)
compute targets
results = objective(inputs)
create a line plot of input vs result
pyplot.plot(inputs, results)
plot the solutions found
pyplot.plot(solutions, scores, '.-', color='red')
show the plot
pyplot.show()

Overview video on Stochastic Gradient Descent
What is Stochastic Gradient Descent

32

https://www.youtube.com/watch?v=vMh0zPT0tLI&ab_channel=StatQuestwithJoshStarmer

Batches and mini-batches
In gradient descent we compute the cost function and its gradient for all data
points we have.

In large-scale applications such as the ILSVRC challenge, the training data
can have on order of millions of examples. Hence, it seems wasteful to compute
the full cost function over the entire training set in order to perform only a
single parameter update. A very common approach to addressing this challenge
is to compute the gradient over batches of the training data. For example, a
typical batch could contain some thousand examples from an entire training set
of several millions. This batch is then used to perform a parameter update.

Stochastic Gradient Descent (SGD)
In stochastic gradient descent, the extreme case is the case where we have only
one batch, that is we include the whole data set.

This process is called Stochastic Gradient Descent (SGD) (or also sometimes
on-line gradient descent). This is relatively less common to see because in
practice due to vectorized code optimizations it can be computationally much
more efficient to evaluate the gradient for 100 examples, than the gradient for
one example 100 times. Even though SGD technically refers to using a single
example at a time to evaluate the gradient, you will hear people use the term
SGD even when referring to mini-batch gradient descent (i.e. mentions of MGD
for “Minibatch Gradient Descent”, or BGD for “Batch gradient descent” are
rare to see), where it is usually assumed that mini-batches are used. The size of
the mini-batch is a hyperparameter but it is not very common to cross-validate
or bootstrap it. It is usually based on memory constraints (if any), or set to
some value, e.g. 32, 64 or 128. We use powers of 2 in practice because many
vectorized operation implementations work faster when their inputs are sized in
powers of 2.

In our notes with SGD we mean stochastic gradient descent with mini-batches.

Stochastic Gradient Descent
Stochastic gradient descent (SGD) and variants thereof address some of the
shortcomings of the Gradient descent method discussed above.

The underlying idea of SGD comes from the observation that the cost function,
which we want to minimize, can almost always be written as a sum over n data
points {xi}n

i=1,

C(β) =
n∑

i=1
ci(xi, β).

33

https://www.image-net.org/challenges/LSVRC/

Computation of gradients
This in turn means that the gradient can be computed as a sum over i-gradients

∇βC(β) =
n∑
i

∇βci(xi, β).

Stochasticity/randomness is introduced by only taking the gradient on a
subset of the data called minibatches. If there are n data points and the size
of each minibatch is M , there will be n/M minibatches. We denote these
minibatches by Bk where k = 1, · · · , n/M .

SGD example
As an example, suppose we have 10 data points (x1, · · · , x10) and we choose
to have M = 5 minibathces, then each minibatch contains two data points. In
particular we have B1 = (x1, x2), · · · , B5 = (x9, x10). Note that if you choose
M = 1 you have only a single batch with all data points and on the other
extreme, you may choose M = n resulting in a minibatch for each datapoint, i.e
Bk = xk.

The idea is now to approximate the gradient by replacing the sum over all
data points with a sum over the data points in one the minibatches picked at
random in each gradient descent step

∇βC(β) =
n∑

i=1
∇βci(xi, β) →

n∑
i∈Bk

∇βci(xi, β).

The gradient step
Thus a gradient descent step now looks like

βj+1 = βj − γj

n∑
i∈Bk

∇βci(xi, β)

where k is picked at random with equal probability from [1, n/M]. An
iteration over the number of minibathces (n/M) is commonly referred to as an
epoch. Thus it is typical to choose a number of epochs and for each epoch iterate
over the number of minibatches, as exemplified in the code below.

Simple example code
import numpy as np

n = 100 #100 datapoints
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
n_epochs = 10 #number of epochs

34

j = 0
for epoch in range(1,n_epochs+1):

for i in range(m):
k = np.random.randint(m) #Pick the k-th minibatch at random
#Compute the gradient using the data in minibatch Bk
#Compute new suggestion for
j += 1

Taking the gradient only on a subset of the data has two important benefits.
First, it introduces randomness which decreases the chance that our opmization
scheme gets stuck in a local minima. Second, if the size of the minibatches
are small relative to the number of datapoints (M < n), the computation of
the gradient is much cheaper since we sum over the datapoints in the k − th
minibatch and not all n datapoints.

When do we stop?
A natural question is when do we stop the search for a new minimum? One
possibility is to compute the full gradient after a given number of epochs and
check if the norm of the gradient is smaller than some threshold and stop if true.
However, the condition that the gradient is zero is valid also for local minima, so
this would only tell us that we are close to a local/global minimum. However, we
could also evaluate the cost function at this point, store the result and continue
the search. If the test kicks in at a later stage we can compare the values of the
cost function and keep the β that gave the lowest value.

Slightly different approach
Another approach is to let the step length γj depend on the number of epochs
in such a way that it becomes very small after a reasonable time such that we
do not move at all. Such approaches are also called scaling. There are many
such ways to scale the learning rate and discussions here. See also https://
towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
for a discussion of different scaling functions for the learning rate.

Time decay rate
As an example, let e = 0, 1, 2, 3, · · · denote the current epoch and let t0, t1 > 0
be two fixed numbers. Furthermore, let t = e · m + i where m is the number of
minibatches and i = 0, · · · , m − 1. Then the function

γj(t; t0, t1) = t0

t + t1

goes to zero as the number of epochs gets large. I.e. we start with a step length
γj(0; t0, t1) = t0/t1 which decays in time t.

In this way we can fix the number of epochs, compute β and evaluate the
cost function at the end. Repeating the computation will give a different result

35

https://towardsdatascience.com/gradient-descent-the-learning-rate-and-the-importance-of-feature-scaling-6c0b416596e1
https://www.jmlr.org/papers/volume23/20-1258/20-1258.pdf
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

since the scheme is random by design. Then we pick the final β that gives the
lowest value of the cost function.

import numpy as np

def step_length(t,t0,t1):
return t0/(t+t1)

n = 100 #100 datapoints
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
n_epochs = 500 #number of epochs
t0 = 1.0
t1 = 10

gamma_j = t0/t1
j = 0
for epoch in range(1,n_epochs+1):

for i in range(m):
k = np.random.randint(m) #Pick the k-th minibatch at random
#Compute the gradient using the data in minibatch Bk
#Compute new suggestion for beta
t = epoch*m+i
gamma_j = step_length(t,t0,t1)
j += 1

print("gamma_j after %d epochs: %g" % (n_epochs,gamma_j))

Code with a Number of Minibatches which varies
In the code here we vary the number of mini-batches.
Importing various packages
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
theta_linreg = np.linalg.inv(X.T @ X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

theta = np.random.randn(2,1)
eta = 1.0/np.max(EigValues)
Niterations = 1000

for iter in range(Niterations):
gradients = 2.0/n*X.T @ ((X @ theta)-y)
theta -= eta*gradients

36

print("theta from own gd")
print(theta)

xnew = np.array([[0],[2]])
Xnew = np.c_[np.ones((2,1)), xnew]
ypredict = Xnew.dot(theta)
ypredict2 = Xnew.dot(theta_linreg)

n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
t0, t1 = 5, 50

def learning_schedule(t):
return t0/(t+t1)

theta = np.random.randn(2,1)

for epoch in range(n_epochs):
Can you figure out a better way of setting up the contributions to each batch?

for i in range(m):
random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (2.0/M)* xi.T @ ((xi @ theta)-yi)
eta = learning_schedule(epoch*m+i)
theta = theta - eta*gradients

print("theta from own sdg")
print(theta)

plt.plot(xnew, ypredict, "r-")
plt.plot(xnew, ypredict2, "b-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'x')
plt.ylabel(r'y')
plt.title(r'Random numbers ')
plt.show()

Replace or not
In the above code, we have use replacement in setting up the mini-batches. The
discussion here may be useful.

Momentum based GD
The stochastic gradient descent (SGD) is almost always used with a momentum
or inertia term that serves as a memory of the direction we are moving in
parameter space. This is typically implemented as follows

vt = γvt−1 + ηt∇θE(θt)
θt+1 = θt − vt, (2)

where we have introduced a momentum parameter γ, with 0 ≤ γ ≤ 1, and for
brevity we dropped the explicit notation to indicate the gradient is to be taken

37

https://sebastianraschka.com/faq/docs/sgd-methods.html

over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running
average of recently encountered gradients and (1 − γ)−1 sets the characteristic
time scale for the memory used in the averaging procedure. Consistent with this,
when γ = 0, this just reduces down to ordinary SGD as discussed earlier. An
equivalent way of writing the updates is

∆θt+1 = γ∆θt − ηt∇θE(θt),

where we have defined ∆θt = θt − θt−1.

More on momentum based approaches
Let us try to get more intuition from these equations. It is helpful to consider a
simple physical analogy with a particle of mass m moving in a viscous medium
with drag coefficient µ and potential E(w). If we denote the particle’s position
by w, then its motion is described by

m
d2w
dt2 + µ

dw
dt

= −∇wE(w).

We can discretize this equation in the usual way to get

m
wt+∆t − 2wt + wt−∆t

(∆t)2 + µ
wt+∆t − wt

∆t
= −∇wE(w).

Rearranging this equation, we can rewrite this as

∆wt+∆t = − (∆t)2

m + µ∆t
∇wE(w) + m

m + µ∆t
∆wt.

Momentum parameter
Notice that this equation is identical to previous one if we identify the position of
the particle, w, with the parameters θ. This allows us to identify the momentum
parameter and learning rate with the mass of the particle and the viscous drag
as:

γ = m

m + µ∆t
, η = (∆t)2

m + µ∆t
.

Thus, as the name suggests, the momentum parameter is proportional to
the mass of the particle and effectively provides inertia. Furthermore, in the
large viscosity/small learning rate limit, our memory time scales as (1 − γ)−1 ≈
m/(µ∆t).

Why is momentum useful? SGD momentum helps the gradient descent
algorithm gain speed in directions with persistent but small gradients even in
the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape

38

is shallow and flat in some directions and narrow and steep in others. It has
been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the
context of complex deep learning models.

These beneficial properties of momentum can sometimes become even more
pronounced by using a slight modification of the classical momentum algorithm
called Nesterov Accelerated Gradient (NAG).

In the NAG algorithm, rather than calculating the gradient at the current
parameters, ∇θE(θt), one calculates the gradient at the expected value of the
parameters given our current momentum, ∇θE(θt + γvt−1). This yields the
NAG update rule

vt = γvt−1 + ηt∇θE(θt + γvt−1)
θt+1 = θt − vt. (3)

One of the major advantages of NAG is that it allows for the use of a larger
learning rate than GDM for the same choice of γ.

Second moment of the gradient
In stochastic gradient descent, with and without momentum, we still have to
specify a schedule for tuning the learning rates ηt as a function of time. As
discussed in the context of Newton’s method, this presents a number of dilemmas.
The learning rate is limited by the steepest direction which can change depending
on the current position in the landscape. To circumvent this problem, ideally
our algorithm would keep track of curvature and take large steps in shallow, flat
directions and small steps in steep, narrow directions. Second-order methods
accomplish this by calculating or approximating the Hessian and normalizing the
learning rate by the curvature. However, this is very computationally expensive
for extremely large models. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational
price of calculating or approximating Hessians.

Recently, a number of methods have been introduced that accomplish this
by tracking not only the gradient, but also the second moment of the gradient.
These methods include AdaGrad, AdaDelta, Root Mean Squared Propagation
(RMS-Prop), and ADAM.

RMS prop
In RMS prop, in addition to keeping a running average of the first moment of
the gradient, we also keep track of the second moment denoted by st = E[g2

t].
The update rule for RMS prop is given by

39

https://arxiv.org/abs/1412.6980

gt = ∇θE(θ) (4)
st = βst−1 + (1 − β)g2

t

θt+1 = θt − ηt
gt√

st + ϵ
,

where β controls the averaging time of the second moment and is typically
taken to be about β = 0.9, ηt is a learning rate typically chosen to be 10−3, and
ϵ ∼ 10−8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear
from this formula that the learning rate is reduced in directions where the norm
of the gradient is consistently large. This greatly speeds up the convergence by
allowing us to use a larger learning rate for flat directions.

ADAM optimizer
A related algorithm is the ADAM optimizer. In ADAM, we keep a running
average of both the first and second moment of the gradient and use this
information to adaptively change the learning rate for different parameters.
The method isefficient when working with large problems involving lots data
and/or parameters. It is a combination of the gradient descent with momentum
algorithm and the RMSprop algorithm discussed above.

In addition to keeping a running average of the first and second moments of
the gradient (i.e. mt = E[gt] and st = E[g2

t], respectively), ADAM performs an
additional bias correction to account for the fact that we are estimating the first
two moments of the gradient using a running average (denoted by the hats in the
update rule below). The update rule for ADAM is given by (where multiplication
and division are once again understood to be element-wise operations below)

gt = ∇θE(θ) (5)
mt = β1mt−1 + (1 − β1)gt

st = β2st−1 + (1 − β2)g2
t

mt = mt

1 − βt
1

st = st

1 − βt
2

θt+1 = θt − ηt
mt√st + ϵ

,

(6)

where β1 and β2 set the memory lifetime of the first and second moment and
are typically taken to be 0.9 and 0.99 respectively, and η and ϵ are identical to
RMSprop.

40

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Like in RMSprop, the effective step size of a parameter depends on the
magnitude of its gradient squared. To understand this better, let us rewrite this
expression in terms of the variance σ2

t = st − (mt)2. Consider a single parameter
θt. The update rule for this parameter is given by

∆θt+1 = −ηt
mt√

σ2
t + m2

t + ϵ
.

Algorithms and codes for Adagrad, RMSprop and Adam
The algorithms we have implemented are well described in the text by Goodfellow,
Bengio and Courville, chapter 8.

The codes which implement these algorithms are discussed after our presen-
tation of automatic differentiation.

Practical tips
• Randomize the data when making mini-batches. It is always impor-

tant to randomly shuffle the data when forming mini-batches. Otherwise,
the gradient descent method can fit spurious correlations resulting from
the order in which data is presented.

• Transform your inputs. Learning becomes difficult when our landscape
has a mixture of steep and flat directions. One simple trick for minimizing
these situations is to standardize the data by subtracting the mean and
normalizing the variance of input variables. Whenever possible, also
decorrelate the inputs. To understand why this is helpful, consider the
case of linear regression. It is easy to show that for the squared error cost
function, the Hessian of the cost function is just the correlation matrix
between the inputs. Thus, by standardizing the inputs, we are ensuring
that the landscape looks homogeneous in all directions in parameter space.
Since most deep networks can be viewed as linear transformations followed
by a non-linearity at each layer, we expect this intuition to hold beyond
the linear case.

• Monitor the out-of-sample performance. Always monitor the perfor-
mance of your model on a validation set (a small portion of the training
data that is held out of the training process to serve as a proxy for the test
set. If the validation error starts increasing, then the model is beginning to
overfit. Terminate the learning process. This early stopping significantly
improves performance in many settings.

• Adaptive optimization methods don’t always have good general-
ization. Recent studies have shown that adaptive methods such as ADAM,
RMSPorp, and AdaGrad tend to have poor generalization compared to
SGD or SGD with momentum, particularly in the high-dimensional limit
(i.e. the number of parameters exceeds the number of data points). Al-
though it is not clear at this stage why these methods perform so well

41

https://www.deeplearningbook.org/contents/optimization.html
https://www.deeplearningbook.org/contents/optimization.html

in training deep neural networks, simpler procedures like properly-tuned
SGD may work as well or better in these applications.

Geron’s text, see chapter 11, has several interesting discussions.

Automatic differentiation
Automatic differentiation (AD), also called algorithmic differentiation or com-
putational differentiation,is a set of techniques to numerically evaluate the
derivative of a function specified by a computer program. AD exploits the fact
that every computer program, no matter how complicated, executes a sequence
of elementary arithmetic operations (addition, subtraction, multiplication, divi-
sion, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the
chain rule repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at most a
small constant factor more arithmetic operations than the original program.

Automatic differentiation is neither:

• Symbolic differentiation, nor

• Numerical differentiation (the method of finite differences).

Symbolic differentiation can lead to inefficient code and faces the difficulty
of converting a computer program into a single expression, while numerical
differentiation can introduce round-off errors in the discretization process and
cancellation

Python has tools for so-called automatic differentiation. Consider the
following example

f(x) = sin
(
2πx + x2)

which has the following derivative

f ′(x) = cos
(
2πx + x2)

(2π + 2x)

Using autograd we have

import autograd.numpy as np

To do elementwise differentiation:
from autograd import elementwise_grad as egrad

To plot:
import matplotlib.pyplot as plt

def f(x):
return np.sin(2*np.pi*x + x**2)

def f_grad_analytic(x):
return np.cos(2*np.pi*x + x**2)*(2*np.pi + 2*x)

Do the comparison:

42

https://en.wikipedia.org/wiki/Automatic_differentiation

x = np.linspace(0,1,1000)

f_grad = egrad(f)

computed = f_grad(x)
analytic = f_grad_analytic(x)

plt.title('Derivative computed from Autograd compared with the analytical derivative')
plt.plot(x,computed,label='autograd')
plt.plot(x,analytic,label='analytic')

plt.xlabel('x')
plt.ylabel('y')
plt.legend()

plt.show()

print("The max absolute difference is: %g"%(np.max(np.abs(computed - analytic))))

Using autograd
Here we experiment with what kind of functions Autograd is capable of finding
the gradient of. The following Python functions are just meant to illustrate what
Autograd can do, but please feel free to experiment with other, possibly more
complicated, functions as well.

import autograd.numpy as np
from autograd import grad

def f1(x):
return x**3 + 1

f1_grad = grad(f1)

Remember to send in float as argument to the computed gradient from Autograd!
a = 1.0

See the evaluated gradient at a using autograd:
print("The gradient of f1 evaluated at a = %g using autograd is: %g"%(a,f1_grad(a)))

Compare with the analytical derivative, that is f1'(x) = 3*x**2
grad_analytical = 3*a**2
print("The gradient of f1 evaluated at a = %g by finding the analytic expression is: %g"%(a,grad_analytical))

Autograd with more complicated functions
To differentiate with respect to two (or more) arguments of a Python function,
Autograd need to know at which variable the function if being differentiated
with respect to.

import autograd.numpy as np
from autograd import grad
def f2(x1,x2):

return 3*x1**3 + x2*(x1 - 5) + 1

43

By sending the argument 0, Autograd will compute the derivative w.r.t the first variable, in this case x1
f2_grad_x1 = grad(f2,0)

... and differentiate w.r.t x2 by sending 1 as an additional arugment to grad
f2_grad_x2 = grad(f2,1)

x1 = 1.0
x2 = 3.0

print("Evaluating at x1 = %g, x2 = %g"%(x1,x2))
print("-"*30)

Compare with the analytical derivatives:

Derivative of f2 w.r.t x1 is: 9*x1**2 + x2:
f2_grad_x1_analytical = 9*x1**2 + x2

Derivative of f2 w.r.t x2 is: x1 - 5:
f2_grad_x2_analytical = x1 - 5

See the evaluated derivations:
print("The derivative of f2 w.r.t x1: %g"%(f2_grad_x1(x1,x2)))
print("The analytical derivative of f2 w.r.t x1: %g"%(f2_grad_x1(x1,x2)))

print()

print("The derivative of f2 w.r.t x2: %g"%(f2_grad_x2(x1,x2)))
print("The analytical derivative of f2 w.r.t x2: %g"%(f2_grad_x2(x1,x2)))

Note that the grad function will not produce the true gradient of the function.
The true gradient of a function with two or more variables will produce a vector,
where each element is the function differentiated w.r.t a variable.

More complicated functions using the elements of their
arguments directly

import autograd.numpy as np
from autograd import grad
def f3(x): # Assumes x is an array of length 5 or higher

return 2*x[0] + 3*x[1] + 5*x[2] + 7*x[3] + 11*x[4]**2

f3_grad = grad(f3)

x = np.linspace(0,4,5)

Print the computed gradient:
print("The computed gradient of f3 is: ", f3_grad(x))

The analytical gradient is: (2, 3, 5, 7, 22*x[4])
f3_grad_analytical = np.array([2, 3, 5, 7, 22*x[4]])

Print the analytical gradient:
print("The analytical gradient of f3 is: ", f3_grad_analytical)

Note that in this case, when sending an array as input argument, the output
from Autograd is another array. This is the true gradient of the function, as

44

opposed to the function in the previous example. By using arrays to represent
the variables, the output from Autograd might be easier to work with, as the
output is closer to what one could expect form a gradient-evaluting function.

Functions using mathematical functions from Numpy
import autograd.numpy as np
from autograd import grad
def f4(x):

return np.sqrt(1+x**2) + np.exp(x) + np.sin(2*np.pi*x)

f4_grad = grad(f4)

x = 2.7

Print the computed derivative:
print("The computed derivative of f4 at x = %g is: %g"%(x,f4_grad(x)))

The analytical derivative is: x/sqrt(1 + x**2) + exp(x) + cos(2*pi*x)*2*pi
f4_grad_analytical = x/np.sqrt(1 + x**2) + np.exp(x) + np.cos(2*np.pi*x)*2*np.pi

Print the analytical gradient:
print("The analytical gradient of f4 at x = %g is: %g"%(x,f4_grad_analytical))

More autograd
import autograd.numpy as np
from autograd import grad
def f5(x):

if x >= 0:
return x**2

else:
return -3*x + 1

f5_grad = grad(f5)

x = 2.7

Print the computed derivative:
print("The computed derivative of f5 at x = %g is: %g"%(x,f5_grad(x)))

And with loops
import autograd.numpy as np
from autograd import grad
def f6_for(x):

val = 0
for i in range(10):

val = val + x**i
return val

def f6_while(x):
val = 0
i = 0
while i < 10:

45

val = val + x**i
i = i + 1

return val

f6_for_grad = grad(f6_for)
f6_while_grad = grad(f6_while)

x = 0.5

Print the computed derivaties of f6_for and f6_while
print("The computed derivative of f6_for at x = %g is: %g"%(x,f6_for_grad(x)))
print("The computed derivative of f6_while at x = %g is: %g"%(x,f6_while_grad(x)))

import autograd.numpy as np
from autograd import grad
Both of the functions are implementation of the sum: sum(x**i) for i = 0, ..., 9
The analytical derivative is: sum(i*x**(i-1))
f6_grad_analytical = 0
for i in range(10):

f6_grad_analytical += i*x**(i-1)

print("The analytical derivative of f6 at x = %g is: %g"%(x,f6_grad_analytical))

Using recursion
import autograd.numpy as np
from autograd import grad

def f7(n): # Assume that n is an integer
if n == 1 or n == 0:

return 1
else:

return n*f7(n-1)

f7_grad = grad(f7)

n = 2.0

print("The computed derivative of f7 at n = %d is: %g"%(n,f7_grad(n)))

The function f7 is an implementation of the factorial of n.
By using the product rule, one can find that the derivative is:

f7_grad_analytical = 0
for i in range(int(n)-1):

tmp = 1
for k in range(int(n)-1):

if k != i:
tmp *= (n - k)

f7_grad_analytical += tmp

print("The analytical derivative of f7 at n = %d is: %g"%(n,f7_grad_analytical))

Note that if n is equal to zero or one, Autograd will give an error message.
This message appears when the output is independent on input.

46

Unsupported functions
Autograd supports many features. However, there are some functions that is not
supported (yet) by Autograd.

Assigning a value to the variable being differentiated with respect to
import autograd.numpy as np
from autograd import grad
def f8(x): # Assume x is an array

x[2] = 3
return x*2

f8_grad = grad(f8)

x = 8.4

print("The derivative of f8 is:",f8_grad(x))

Here, Autograd tells us that an ’ArrayBox’ does not support item assignment.
The item assignment is done when the program tries to assign x[2] to the value
3. However, Autograd has implemented the computation of the derivative such
that this assignment is not possible.

The syntax a.dot(b) when finding the dot product
import autograd.numpy as np
from autograd import grad
def f9(a): # Assume a is an array with 2 elements

b = np.array([1.0,2.0])
return a.dot(b)

f9_grad = grad(f9)

x = np.array([1.0,0.0])

print("The derivative of f9 is:",f9_grad(x))

Here we are told that the ’dot’ function does not belong to Autograd’s version
of a Numpy array. To overcome this, an alternative syntax which also computed
the dot product can be used:

import autograd.numpy as np
from autograd import grad
def f9_alternative(x): # Assume a is an array with 2 elements

b = np.array([1.0,2.0])
return np.dot(x,b) # The same as x_1*b_1 + x_2*b_2

f9_alternative_grad = grad(f9_alternative)

x = np.array([3.0,0.0])

print("The gradient of f9 is:",f9_alternative_grad(x))

The analytical gradient of the dot product of vectors x and b with two elements (x_1,x_2) and (b_1, b_2) respectively
w.r.t x is (b_1, b_2).

47

Recommended to avoid
The documentation recommends to avoid inplace operations such as

a += b
a -= b
a*= b
a /=b

Using Autograd with OLS
We conclude the part on optmization by showing how we can make codes for
linear regression and logistic regression using autograd. The first example
shows results with ordinary leats squares.

Using Autograd to calculate gradients for OLS
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

def CostOLS(beta):
return (1.0/n)*np.sum((y-X @ beta)**2)

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

theta = np.random.randn(2,1)
eta = 1.0/np.max(EigValues)
Niterations = 1000
define the gradient
training_gradient = grad(CostOLS)

for iter in range(Niterations):
gradients = training_gradient(theta)
theta -= eta*gradients

print("theta from own gd")
print(theta)

xnew = np.array([[0],[2]])
Xnew = np.c_[np.ones((2,1)), xnew]
ypredict = Xnew.dot(theta)
ypredict2 = Xnew.dot(theta_linreg)

plt.plot(xnew, ypredict, "r-")
plt.plot(xnew, ypredict2, "b-")

48

plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'x')
plt.ylabel(r'y')
plt.title(r'Random numbers ')
plt.show()

Same code but now with momentum gradient descent
Using Autograd to calculate gradients for OLS
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

def CostOLS(beta):
return (1.0/n)*np.sum((y-X @ beta)**2)

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x#+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

theta = np.random.randn(2,1)
eta = 1.0/np.max(EigValues)
Niterations = 30

define the gradient
training_gradient = grad(CostOLS)

for iter in range(Niterations):
gradients = training_gradient(theta)
theta -= eta*gradients
print(iter,gradients[0],gradients[1])

print("theta from own gd")
print(theta)

Now improve with momentum gradient descent
change = 0.0
delta_momentum = 0.3
for iter in range(Niterations):

calculate gradient
gradients = training_gradient(theta)
calculate update
new_change = eta*gradients+delta_momentum*change
take a step
theta -= new_change
save the change

49

change = new_change
print(iter,gradients[0],gradients[1])

print("theta from own gd wth momentum")
print(theta)

But none of these can compete with Newton’s method
Using Newton's method
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

def CostOLS(beta):
return (1.0/n)*np.sum((y-X @ beta)**2)

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
beta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(beta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
Note that here the Hessian does not depend on the parameters beta
invH = np.linalg.pinv(H)
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

beta = np.random.randn(2,1)
Niterations = 5

define the gradient
training_gradient = grad(CostOLS)

for iter in range(Niterations):
gradients = training_gradient(beta)
beta -= invH @ gradients
print(iter,gradients[0],gradients[1])

print("beta from own Newton code")
print(beta)

Including Stochastic Gradient Descent with Autograd
In this code we include the stochastic gradient descent approach discussed above.
Note here that we specify which argument we are taking the derivative with
respect to when using autograd.

Using Autograd to calculate gradients using SGD
OLS example
from random import random, seed

50

import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

Note change from previous example
def CostOLS(y,X,theta):

return np.sum((y-X @ theta)**2)

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

theta = np.random.randn(2,1)
eta = 1.0/np.max(EigValues)
Niterations = 1000

Note that we request the derivative wrt third argument (theta, 2 here)
training_gradient = grad(CostOLS,2)

for iter in range(Niterations):
gradients = (1.0/n)*training_gradient(y, X, theta)
theta -= eta*gradients

print("theta from own gd")
print(theta)

xnew = np.array([[0],[2]])
Xnew = np.c_[np.ones((2,1)), xnew]
ypredict = Xnew.dot(theta)
ypredict2 = Xnew.dot(theta_linreg)

plt.plot(xnew, ypredict, "r-")
plt.plot(xnew, ypredict2, "b-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'x')
plt.ylabel(r'y')
plt.title(r'Random numbers ')
plt.show()

n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
t0, t1 = 5, 50
def learning_schedule(t):

return t0/(t+t1)

theta = np.random.randn(2,1)

for epoch in range(n_epochs):
Can you figure out a better way of setting up the contributions to each batch?

51

for i in range(m):
random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (1.0/M)*training_gradient(yi, xi, theta)
eta = learning_schedule(epoch*m+i)
theta = theta - eta*gradients

print("theta from own sdg")
print(theta)

Same code but now with momentum gradient descent
Using Autograd to calculate gradients using SGD
OLS example
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

Note change from previous example
def CostOLS(y,X,theta):

return np.sum((y-X @ theta)**2)

n = 100
x = 2*np.random.rand(n,1)
y = 4+3*x+np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)
Hessian matrix
H = (2.0/n)* XT_X
EigValues, EigVectors = np.linalg.eig(H)
print(f"Eigenvalues of Hessian Matrix:{EigValues}")

theta = np.random.randn(2,1)
eta = 1.0/np.max(EigValues)
Niterations = 100

Note that we request the derivative wrt third argument (theta, 2 here)
training_gradient = grad(CostOLS,2)

for iter in range(Niterations):
gradients = (1.0/n)*training_gradient(y, X, theta)
theta -= eta*gradients

print("theta from own gd")
print(theta)

n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
t0, t1 = 5, 50
def learning_schedule(t):

52

return t0/(t+t1)

theta = np.random.randn(2,1)

change = 0.0
delta_momentum = 0.3

for epoch in range(n_epochs):
for i in range(m):

random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (1.0/M)*training_gradient(yi, xi, theta)
eta = learning_schedule(epoch*m+i)
calculate update
new_change = eta*gradients+delta_momentum*change
take a step
theta -= new_change
save the change
change = new_change

print("theta from own sdg with momentum")
print(theta)

AdaGrad algorithm, taken from Goodfellow et al

Similar (second order function now) problem but now with
AdaGrad

Using Autograd to calculate gradients using AdaGrad and Stochastic Gradient descent
OLS example
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

Note change from previous example
def CostOLS(y,X,theta):

53

https://www.deeplearningbook.org/contents/optimization.html

return np.sum((y-X @ theta)**2)

n = 1000
x = np.random.rand(n,1)
y = 2.0+3*x +4*x*x

X = np.c_[np.ones((n,1)), x, x*x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)

Note that we request the derivative wrt third argument (theta, 2 here)
training_gradient = grad(CostOLS,2)
Define parameters for Stochastic Gradient Descent
n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
Guess for unknown parameters theta
theta = np.random.randn(3,1)

Value for learning rate
eta = 0.01
Including AdaGrad parameter to avoid possible division by zero
delta = 1e-8
for epoch in range(n_epochs):

Giter = 0.0
for i in range(m):

random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (1.0/M)*training_gradient(yi, xi, theta)
Giter += gradients*gradients
update = gradients*eta/(delta+np.sqrt(Giter))
theta -= update

print("theta from own AdaGrad")
print(theta)

Running this code we note an almost perfect agreement with the results from
matrix inversion.

54

RMSProp algorithm, taken from Goodfellow et al

RMSprop for adaptive learning rate with Stochastic Gradi-
ent Descent

Using Autograd to calculate gradients using RMSprop and Stochastic Gradient descent
OLS example
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt
from autograd import grad

Note change from previous example
def CostOLS(y,X,theta):

return np.sum((y-X @ theta)**2)

n = 1000
x = np.random.rand(n,1)
y = 2.0+3*x +4*x*x# +np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x, x*x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)

Note that we request the derivative wrt third argument (theta, 2 here)
training_gradient = grad(CostOLS,2)
Define parameters for Stochastic Gradient Descent
n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
Guess for unknown parameters theta
theta = np.random.randn(3,1)

Value for learning rate
eta = 0.01

55

https://www.deeplearningbook.org/contents/optimization.html

Value for parameter rho
rho = 0.99
Including AdaGrad parameter to avoid possible division by zero
delta = 1e-8
for epoch in range(n_epochs):

Giter = 0.0
for i in range(m):

random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (1.0/M)*training_gradient(yi, xi, theta)
Accumulated gradient
Scaling with rho the new and the previous results
Giter = (rho*Giter+(1-rho)*gradients*gradients)
Taking the diagonal only and inverting
update = gradients*eta/(delta+np.sqrt(Giter))
Hadamard product
theta -= update

print("theta from own RMSprop")
print(theta)

ADAM algorithm, taken from Goodfellow et al

And finally ADAM
Using Autograd to calculate gradients using RMSprop and Stochastic Gradient descent
OLS example
from random import random, seed
import numpy as np
import autograd.numpy as np
import matplotlib.pyplot as plt

56

https://www.deeplearningbook.org/contents/optimization.html
https://arxiv.org/pdf/1412.6980.pdf

from autograd import grad

Note change from previous example
def CostOLS(y,X,theta):

return np.sum((y-X @ theta)**2)

n = 1000
x = np.random.rand(n,1)
y = 2.0+3*x +4*x*x# +np.random.randn(n,1)

X = np.c_[np.ones((n,1)), x, x*x]
XT_X = X.T @ X
theta_linreg = np.linalg.pinv(XT_X) @ (X.T @ y)
print("Own inversion")
print(theta_linreg)

Note that we request the derivative wrt third argument (theta, 2 here)
training_gradient = grad(CostOLS,2)
Define parameters for Stochastic Gradient Descent
n_epochs = 50
M = 5 #size of each minibatch
m = int(n/M) #number of minibatches
Guess for unknown parameters theta
theta = np.random.randn(3,1)

Value for learning rate
eta = 0.01
Value for parameters beta1 and beta2, see https://arxiv.org/abs/1412.6980
beta1 = 0.9
beta2 = 0.999
Including AdaGrad parameter to avoid possible division by zero
delta = 1e-7
iter = 0
for epoch in range(n_epochs):

first_moment = 0.0
second_moment = 0.0
iter += 1
for i in range(m):

random_index = M*np.random.randint(m)
xi = X[random_index:random_index+M]
yi = y[random_index:random_index+M]
gradients = (1.0/M)*training_gradient(yi, xi, theta)
Computing moments first
first_moment = beta1*first_moment + (1-beta1)*gradients
second_moment = beta2*second_moment+(1-beta2)*gradients*gradients
first_term = first_moment/(1.0-beta1**iter)
second_term = second_moment/(1.0-beta2**iter)
Scaling with rho the new and the previous results
update = eta*first_term/(np.sqrt(second_term)+delta)
theta -= update

print("theta from own ADAM")
print(theta)

Introducing JAX
Presently, instead of using autograd, we recommend using JAX

57

https://jax.readthedocs.io/en/latest/
https://jax.readthedocs.io/en/latest/

JAX is Autograd and XLA (Accelerated Linear Algebra)), brought together
for high-performance numerical computing and machine learning research. It
provides composable transformations of Python+NumPy programs: differentiate,
vectorize, parallelize, Just-In-Time compile to GPU/TPU, and more.

Getting started with Jax, note the way we import numpy.
import jax
import jax.numpy as jnp
import numpy as np
import matplotlib.pyplot as plt

from jax import grad as jax_grad

A warm-up example.
def function(x):

return x**2

def analytical_gradient(x):
return 2*x

def gradient_descent(starting_point, learning_rate, num_iterations, solver="analytical"):
x = starting_point
trajectory_x = [x]
trajectory_y = [function(x)]

if solver == "analytical":
grad = analytical_gradient

elif solver == "jax":
grad = jax_grad(function)
x = jnp.float64(x)
learning_rate = jnp.float64(learning_rate)

for _ in range(num_iterations):

x = x - learning_rate * grad(x)
trajectory_x.append(x)
trajectory_y.append(function(x))

return trajectory_x, trajectory_y

x = np.linspace(-5, 5, 100)
plt.plot(x, function(x), label="f(x)")

descent_x, descent_y = gradient_descent(5, 0.1, 10, solver="analytical")
jax_descend_x, jax_descend_y = gradient_descent(5, 0.1, 10, solver="jax")

plt.plot(descent_x, descent_y, label="Gradient descent", marker="o")
plt.plot(jax_descend_x, jax_descend_y, label="JAX", marker="x")

A more advanced example.
backend = np

def function(x):

58

https://www.tensorflow.org/xla

return x*backend.sin(x**2 + 1)

def analytical_gradient(x):
return backend.sin(x**2 + 1) + 2*x**2*backend.cos(x**2 + 1)

x = np.linspace(-5, 5, 100)
plt.plot(x, function(x), label="f(x)")

descent_x, descent_y = gradient_descent(1, 0.01, 300, solver="analytical")

Change the backend to JAX
backend = jnp
jax_descend_x, jax_descend_y = gradient_descent(1, 0.01, 300, solver="jax")

plt.scatter(descent_x, descent_y, label="Gradient descent", marker="v", s=10, color="red")
plt.scatter(jax_descend_x, jax_descend_y, label="JAX", marker="x", s=5, color="black")

And Logistic Regression
import autograd.numpy as np
from autograd import grad

def sigmoid(x):
return 0.5 * (np.tanh(x / 2.) + 1)

def logistic_predictions(weights, inputs):
Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))

def training_loss(weights):
Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights, inputs)
label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))

Build a toy dataset.
inputs = np.array([[0.52, 1.12, 0.77],

[0.88, -1.08, 0.15],
[0.52, 0.06, -1.30],
[0.74, -2.49, 1.39]])

targets = np.array([True, True, False, True])

Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)

Optimize weights using gradient descent.
weights = np.array([0.0, 0.0, 0.0])
print("Initial loss:", training_loss(weights))
for i in range(100):

weights -= training_gradient_fun(weights) * 0.01

print("Trained loss:", training_loss(weights))

59

Overarching aims of the exercises
The aim of the exercises this week is to get started with implementing gradient
methods.

In order to get started, we will now replace in our standard ordinary least
squares (OLS) and Ridge regression codes the matrix inversion algorithm with
our own gradient descent (GD) and SGD codes. In developing the codes we
recommend using a simple function like f(x) = a0 + a1x + a2x2 or higher-order
one-dimensional polynomials.

You should include in your analysis of the GD and SGD codes the following
elements

1. A plain gradient descent with a fixed learning rate (you will need to tune
it) using the analytical expression of the gradients

2. Add momentum to the plain GD code and compare convergence with a
fixed learning rate (you may need to tune the learning rate), again using
the analytical expression of the gradients.

3. Repeat these steps for stochastic gradient descent with mini batches and a
given number of epochs. Use a tunable learning rate. Discuss the results
as functions of the various parameters (size of batches, number of epochs
etc)

4. Implement the Adagrad method in order to tune the learning rate. Do
this with and without momentum for plain gradient descent and SGD.

5. Add RMSprop and Adam to your library of methods for tuning the learning
rate.

In summary, you should perform an analysis of the results for OLS and Ridge
regression as function of the chosen learning rates, the number of mini-batches
and epochs as well as algorithm for scaling the learning rate. You can also
compare your own results with those that can be obtained using for example
Scikit-Learn’s various SGD options. Discuss your results. For Ridge regression
you need now to study the results as functions of the hyper-parameter λ and
the learning rate η. Discuss your results.

We recommend reading chapter 8 on optimization from the textbook of
Goodfellow, Bengio and Courville. This chapter contains many useful insights
and discussions on the optimization part of machine learning.

60

https://www.deeplearningbook.org/

