
Deep Learning: Convolutional Neural
Networks and Recurrent Neural

Networks

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Jan 13, 2023

Plans for January 14 and 15, 2023
• Saturday January 14: Convolutional Neural Networks (CNN)

– Video of lecture to be added

• Sunday January 15: Recurrent Neural Networks (RNN)

– Video of lecture to be added
– Discussion of last project

Excellent lectures on CNNs and RNNs.

• Video on Convolutional Neural Networks from MIT

• Video on Recurrent Neural Networks from MIT

• Video on Deep Learning

More resources.

• IN5400 at UiO Lecture

• CS231 at Stanford Lecture

© 1999-2023, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

https://youtu.be/
https://youtu.be/
https://www.youtube.com/watch?v=iaSUYvmCekI&ab_channel=AlexanderAmini
https://www.youtube.com/watch?v=SEnXr6v2ifU&ab_channel=AlexanderAmini
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.uio.no/studier/emner/matnat/ifi/IN5400/v20/material/week10/in5400_2020_week10_recurrent_neural_network.pdf
https://www.youtube.com/watch?v=6niqTuYFZLQ&list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq&index=10&ab_channel=StanfordUniversitySchoolofEngineering

Reading Recommendations
CNN readings.

1. Goodfellow, Bengio, Courville, chapter 9

2. We will follow to a large extent the lectures from CS231 at Stanford

3. Michael Nielsen’s book is a must read, in particular chapter 6 which deals
with CNNs.

RNN readings.

1. Goodfellow et al, chapter 10 on Recurrent NNs, chapters 11 and 12 on
various practicalities around deep learning are also recommended.

2. Lectures from CS231 at Stanford

3. Aurelien Geron, chapter 14 on RNNs.

Convolutional Neural Networks (recognizing images)
Convolutional neural networks (CNNs) were developed during the last decade
of the previous century, with a focus on character recognition tasks. Nowadays,
CNNs are a central element in the spectacular success of deep learning methods.
The success in for example image classifications have made them a central tool
for most machine learning practitioners.

CNNs are very similar to ordinary Neural Networks. They are made up
of neurons that have learnable weights and biases. Each neuron receives some
inputs, performs a dot product and optionally follows it with a non-linearity.
The whole network still expresses a single differentiable score function: from the
raw image pixels on one end to class scores at the other. And they still have
a loss function (for example Softmax) on the last (fully-connected) layer and
all the tips/tricks we developed for learning regular Neural Networks still apply
(back propagation, gradient descent etc etc).

What is the Difference
CNN architectures make the explicit assumption that the inputs
are images, which allows us to encode certain properties into the
architecture. These then make the forward function more efficient
to implement and vastly reduce the amount of parameters in the
network.

Here we provide only a superficial overview, for the more interested, we
recommend highly the course IN5400 – Machine Learning for Image Analysis
and the slides of CS231.

Another good read is the article here https://arxiv.org/pdf/1603.07285.
pdf.

2

https://www.deeplearningbook.org/contents/convnets.html
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html
https://www.deeplearningbook.org/contents/rnn.html
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
https://www.uio.no/studier/emner/matnat/ifi/IN5400/index-eng.html
http://cs231n.github.io/convolutional-networks/
https://arxiv.org/pdf/1603.07285.pdf
https://arxiv.org/pdf/1603.07285.pdf

Neural Networks vs CNNs
Neural networks are defined as affine transformations, that is a vector is
received as input and is multiplied with a matrix of so-called weights (our
unknown paramters) to produce an output (to which a bias vector is usually
added before passing the result through a nonlinear activation function). This is
applicable to any type of input, be it an image, a sound clip or an unordered
collection of features: whatever their dimensionality, their representation can
always be flattened into a vector before the transformation.

Why CNNS for images, sound files, medical images from
CT scans etc?
However, when we consider images, sound clips and many other similar kinds
of data, these data have an intrinsic structure. More formally, they share these
important properties:

• They are stored as multi-dimensional arrays (think of the pixels of a figure)
.

• They feature one or more axes for which ordering matters (e.g., width and
height axes for an image, time axis for a sound clip).

• One axis, called the channel axis, is used to access different views of the
data (e.g., the red, green and blue channels of a color image, or the left
and right channels of a stereo audio track).

These properties are not exploited when an affine transformation is applied; in
fact, all the axes are treated in the same way and the topological information
is not taken into account. Still, taking advantage of the implicit structure of
the data may prove very handy in solving some tasks, like computer vision and
speech recognition, and in these cases it would be best to preserve it. This is
where discrete convolutions come into play.

A discrete convolution is a linear transformation that preserves this notion of
ordering. It is sparse (only a few input units contribute to a given output unit)
and reuses parameters (the same weights are applied to multiple locations in the
input).

Regular NNs don’t scale well to full images
As an example, consider an image of size 32 × 32 × 3 (32 wide, 32 high, 3 color
channels), so a single fully-connected neuron in a first hidden layer of a regular
Neural Network would have 32 × 32 × 3 = 3072 weights. This amount still seems
manageable, but clearly this fully-connected structure does not scale to larger
images. For example, an image of more respectable size, say 200 × 200 × 3, would
lead to neurons that have 200 × 200 × 3 = 120, 000 weights.

We could have several such neurons, and the parameters would add up
quickly! Clearly, this full connectivity is wasteful and the huge number of
parameters would quickly lead to possible overfitting.

3

Figure 1: A regular 3-layer Neural Network.

3D volumes of neurons
Convolutional Neural Networks take advantage of the fact that the input consists
of images and they constrain the architecture in a more sensible way.

In particular, unlike a regular Neural Network, the layers of a CNN have
neurons arranged in 3 dimensions: width, height, depth. (Note that the word
depth here refers to the third dimension of an activation volume, not to the
depth of a full Neural Network, which can refer to the total number of layers in
a network.)

To understand it better, the above example of an image with an input volume
of activations has dimensions 32 × 32 × 3 (width, height, depth respectively).

The neurons in a layer will only be connected to a small region of the layer
before it, instead of all of the neurons in a fully-connected manner. Moreover,
the final output layer could for this specific image have dimensions 1 × 1 × 10,
because by the end of the CNN architecture we will reduce the full image into a
single vector of class scores, arranged along the depth dimension.

Figure 2: A CNN arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a CNN transforms
the 3D input volume to a 3D output volume of neuron activations. In this
example, the red input layer holds the image, so its width and height would
be the dimensions of the image, and the depth would be 3 (Red, Green, Blue
channels).

4

Layers used to build CNNs
A simple CNN is a sequence of layers, and every layer of a CNN transforms one
volume of activations to another through a differentiable function. We use three
main types of layers to build CNN architectures: Convolutional Layer, Pooling
Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks).
We will stack these layers to form a full CNN architecture.

A simple CNN for image classification could have the architecture:

• INPUT (32 × 32 × 3) will hold the raw pixel values of the image, in this
case an image of width 32, height 32, and with three color channels R,G,B.

• CONV (convolutional)layer will compute the output of neurons that are
connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the input
volume. This may result in volume such as [32 × 32 × 12] if we decided to
use 12 filters.

• RELU layer will apply an elementwise activation function, such as the
max(0, x) thresholding at zero. This leaves the size of the volume un-
changed ([32 × 32 × 12]).

• POOL (pooling) layer will perform a downsampling operation along the
spatial dimensions (width, height), resulting in volume such as [16×16×12].

• FC (i.e. fully-connected) layer will compute the class scores, resulting in
volume of size [1 × 1 × 10], where each of the 10 numbers correspond to
a class score, such as among the 10 categories of the MNIST images we
considered above . As with ordinary Neural Networks and as the name
implies, each neuron in this layer will be connected to all the numbers in
the previous volume.

Transforming images
CNNs transform the original image layer by layer from the original pixel values
to the final class scores.

Observe that some layers contain parameters and other don’t. In particular,
the CNN layers perform transformations that are a function of not only the
activations in the input volume, but also of the parameters (the weights and biases
of the neurons). On the other hand, the RELU/POOL layers will implement
a fixed function. The parameters in the CONV/FC layers will be trained with
gradient descent so that the class scores that the CNN computes are consistent
with the labels in the training set for each image.

CNNs in brief
In summary:

5

• A CNN architecture is in the simplest case a list of Layers that transform
the image volume into an output volume (e.g. holding the class scores)

• There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL
are by far the most popular)

• Each Layer accepts an input 3D volume and transforms it to an output
3D volume through a differentiable function

• Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL
don’t)

• Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL
do, RELU doesn’t)

For more material on convolutional networks, we strongly recommend the course
IN5400 – Machine Learning for Image Analysis and the slides of CS231 which is
taught at Stanford University (consistently ranked as one of the top computer
science programs in the world). Michael Nielsen’s book is a must read, in
particular chapter 6 which deals with CNNs.

The textbook by Goodfellow et al, see chapter 9 contains an in depth
discussion as well.

Key Idea
A dense neural network is representd by an affine operation (like matrix-matrix
multiplication) where all parameters are included.

The key idea in CNNs for say imaging is that in images neighbor pixels tend
to be related! So we connect only neighboring neurons in the input instead of
connecting all with the first hidden layer.

We say we perform a filtering (convolution is the mathematical operation).

Mathematics of CNNs
The mathematics of CNNs is based on the mathematical operation of convo-
lution. In mathematics (in particular in functional analysis), convolution is
represented by mathematical operation (integration, summation etc) on two
function in order to produce a third function that expresses how the shape of
one gets modified by the other. Convolution has a plethora of applications in
a variety of disciplines, spanning from statistics to signal processing, computer
vision, solutions of differential equations,linear algebra, engineering, and yes,
machine learning.

Mathematically, convolution is defined as follows (one-dimensional example):
Let us define a continuous function y(t) given by

y(t) =
∫

x(a)w(t − a)da,

6

https://www.uio.no/studier/emner/matnat/ifi/IN5400/index-eng.html
http://cs231n.github.io/convolutional-networks/
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html

where x(a) represents a so-called input and w(t−a) is normally called the weight
function or kernel.

The above integral is written in a more compact form as

y(t) = (x ∗ w) (t).

The discretized version reads

y(t) =
a=∞∑

a=−∞
x(a)w(t − a).

Computing the inverse of the above convolution operations is known as deconvo-
lution.

How can we use this? And what does it mean? Let us study some familiar
examples first.

Convolution Examples: Polynomial multiplication
We have already met such an example in project 1 when we tried to set up the
design matrix for a two-dimensional function. This was an example of polynomial
multiplication. Let us recast such a problem in terms of the convolution operation.
Let us look a the following polynomials to second and third order, respectively:

p(t) = α0 + α1t + α2t2,

and
s(t) = β0 + β1t + β2t2 + β3t3.

The polynomial multiplication gives us a new polynomial of degree 5

z(t) = δ0 + δ1t + δ2t2 + δ3t3 + δ4t4 + δ5t5.

Efficient Polynomial Multiplication
Computing polynomial products can be implemented efficiently if we rewrite the
more brute force multiplications using convolution. We note first that the new
coefficients are given as

We note that αi = 0 except for i ∈ {0, 1, 2} and βi = 0 except for i ∈
{0, 1, 2, 3}.

We can then rewrite the coefficients δj using a discrete convolution as

δj =
i=∞∑

i=−∞
αiβj−i = (α ∗ β)j ,

or as a double sum with restriction l = i + j

δl =
∑

ij

αiβj .

Do you see a potential drawback with these equations?

7

A more efficient way of coding the above Convolution
Since we only have a finite number of α and β values which are non-zero, we
can rewrite the above convolution expressions as a matrix-vector multiplication

δ =

α0 0 0 0
α1 α0 0 0
α2 α1 α0 0
0 α2 α1 α0
0 0 α2 α1
0 0 0 α2

β0
β1
β2
β3

 .

The process is commutative and we can easily see that we can rewrite the
multiplication in terms of a matrix holding β and a vector holding α. In this
case we have

δ =

β0 0 0
β1 β0 0
β2 β1 β0
β3 β2 β1
0 β3 β2
0 0 β3

α0

α1
α2

 .

Note that the use of these matrices is for mathematical purposes only and
not implementation purposes. When implementing the above equation we do
not encode (and allocate memory) the matrices explicitely. We rather code the
convolutions in the minimal memory footprint that they require.

Does the number of floating point operations change here when we use the
commutative property?

Two-dimensional Objects
We often use convolutions over more than one dimension at a time. If we
have a two-dimensional image I as input, we can have a filter defined by a
two-dimensional kernel K. This leads to an output S

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n).

Convolution is a commutatitave process, which means we can rewrite this
equation as

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i − m, j − n)K(m, n).

Normally the latter is more straightforward to implement in a machine
elarning library since there is less variation in the range of values of m and n.

8

Cross-Correlation
Many deep learning libraries implement cross-correlation instead of convolution

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i + m, j − +)K(m, n).

More on Dimensionalities
In feilds like signal processing (and imaging as well), one designs so-called filters.
These filters are defined by the convolutions and are often hand-crafted. One
may specify filters for smoothing, edge detection, frequency reshaping, and
similar operations. However with neural networks the idea is to automatically
learn the filters and use many of them in conjunction with non-linear operations
(activation functions).

As an example consider a neural network operating on sound sequence data.
Assume that we an input vector x of length d = 106. We construct then a neural
network with onle hidden layer only with 104 nodes. This means that we will
have a weight matrix with 104 × 106 = 1010 weights to be determined, together
with 104 biases.

Assume furthermore that we have an output layer which is meant to train
whether the sound sequence represents a human voice (true) or something else
(false). It means that we have only one output node. But since this output node
connects to 104 nodes in the hidden layer, there are in total 104 weights to be
determined for the output layer, plus one bias. In total we have

NumberParameters = 1010 + 104 + 104 + 1 ≈ 1010,

that is ten billion parameters to determine.

Further Dimensionality Remarks
In today’s architecture one can train such neural networks, however this is a
huge number of parameters for the task at hand. In general, it is a very wasteful
and inefficient use of dense matrices as parameters. Just as importantly, such
trained network parameters are very specific for the type of input data on which
they were trained and the network is not likely to generalize easily to variations
in the input.

The main principles that justify convolutions is locality of information and
repetion of patterns within the signal. Sound samples of the input in adjacent
spots are much more likely to affect each other than those that are very far away.
Similarly, sounds are repeated in multiple times in the signal. While slightly
simplistic, reasoning about such a sound example demonstrates this. The same
principles then apply to images and other similar data.

CNNs in more detail, Lecture from IN5400
• Lectures from IN5400 spring 2019

9

https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/material/week5/in5400_2019_week5_convolutional_nerual_networks.pdf

CNNs in more detail, building convolutional neural networks
in Tensorflow and Keras
As discussed above, CNNs are neural networks built from the assumption that
the inputs to the network are 2D images. This is important because the number
of features or pixels in images grows very fast with the image size, and an
enormous number of weights and biases are needed in order to build an accurate
network.

As before, we still have our input, a hidden layer and an output. What’s
novel about convolutional networks are the convolutional and pooling layers
stacked in pairs between the input and the hidden layer. In addition, the data is
no longer represented as a 2D feature matrix, instead each input is a number of
2D matrices, typically 1 for each color dimension (Red, Green, Blue).

Setting it up
It means that to represent the entire dataset of images, we require a 4D matrix
or tensor. This tensor has the dimensions:

(ninputs, npixels,width, npixels,height, depth).

The MNIST dataset again
The MNIST dataset consists of grayscale images with a pixel size of 28 × 28,
meaning we require 28 × 28 = 724 weights to each neuron in the first hidden
layer.

If we were to analyze images of size 128 × 128 we would require 128 × 128 =
16384 weights to each neuron. Even worse if we were dealing with color images,
as most images are, we have an image matrix of size 128 × 128 for each color
dimension (Red, Green, Blue), meaning 3 times the number of weights = 49152
are required for every single neuron in the first hidden layer.

Strong correlations
Images typically have strong local correlations, meaning that a small part of
the image varies little from its neighboring regions. If for example we have an
image of a blue car, we can roughly assume that a small blue part of the image
is surrounded by other blue regions.

Therefore, instead of connecting every single pixel to a neuron in the first
hidden layer, as we have previously done with deep neural networks, we can
instead connect each neuron to a small part of the image (in all 3 RGB depth
dimensions). The size of each small area is fixed, and known as a receptive.

Layers of a CNN
The layers of a convolutional neural network arrange neurons in 3D: width,
height and depth. The input image is typically a square matrix of depth 3.

10

https://en.wikipedia.org/wiki/Receptive_field

A convolution is performed on the image which outputs a 3D volume of
neurons. The weights to the input are arranged in a number of 2D matrices,
known as filters.

Each filter slides along the input image, taking the dot product between each
small part of the image and the filter, in all depth dimensions. This is then
passed through a non-linear function, typically the Rectified Linear (ReLu)
function, which serves as the activation of the neurons in the first convolutional
layer. This is further passed through a pooling layer, which reduces the size
of the convolutional layer, e.g. by taking the maximum or average across some
small regions, and this serves as input to the next convolutional layer.

Systematic reduction
By systematically reducing the size of the input volume, through convolution and
pooling, the network should create representations of small parts of the input,
and then from them assemble representations of larger areas. The final pooling
layer is flattened to serve as input to a hidden layer, such that each neuron in the
final pooling layer is connected to every single neuron in the hidden layer. This
then serves as input to the output layer, e.g. a softmax output for classification.

Prerequisites: Collect and pre-process data
import necessary packages
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

ensure the same random numbers appear every time
np.random.seed(0)

display images in notebook
%matplotlib inline
plt.rcParams['figure.figsize'] = (12,12)

download MNIST dataset
digits = datasets.load_digits()

define inputs and labels
inputs = digits.images
labels = digits.target

RGB images have a depth of 3
our images are grayscale so they should have a depth of 1
inputs = inputs[:,:,:,np.newaxis]

print("inputs = (n_inputs, pixel_width, pixel_height, depth) = " + str(inputs.shape))
print("labels = (n_inputs) = " + str(labels.shape))

choose some random images to display
n_inputs = len(inputs)
indices = np.arange(n_inputs)

11

random_indices = np.random.choice(indices, size=5)

for i, image in enumerate(digits.images[random_indices]):
plt.subplot(1, 5, i+1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title("Label: %d" % digits.target[random_indices[i]])

plt.show()

Importing Keras and Tensorflow
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Sequential #This allows appending layers to existing models
from tensorflow.keras.layers import Dense #This allows defining the characteristics of a particular layer
from tensorflow.keras import optimizers #This allows using whichever optimiser we want (sgd,adam,RMSprop)
from tensorflow.keras import regularizers #This allows using whichever regularizer we want (l1,l2,l1_l2)
from tensorflow.keras.utils import to_categorical #This allows using categorical cross entropy as the cost function
#from tensorflow.keras import Conv2D
#from tensorflow.keras import MaxPooling2D
#from tensorflow.keras import Flatten

from sklearn.model_selection import train_test_split

representation of labels
labels = to_categorical(labels)

split into train and test data
one-liner from scikit-learn library
train_size = 0.8
test_size = 1 - train_size
X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels, train_size=train_size,

test_size=test_size)

Running with Keras
def create_convolutional_neural_network_keras(input_shape, receptive_field,

n_filters, n_neurons_connected, n_categories,
eta, lmbd):

model = Sequential()
model.add(layers.Conv2D(n_filters, (receptive_field, receptive_field), input_shape=input_shape, padding='same',

activation='relu', kernel_regularizer=regularizers.l2(lmbd)))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(n_neurons_connected, activation='relu', kernel_regularizer=regularizers.l2(lmbd)))
model.add(layers.Dense(n_categories, activation='softmax', kernel_regularizer=regularizers.l2(lmbd)))

sgd = optimizers.SGD(lr=eta)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

return model

epochs = 100
batch_size = 100
input_shape = X_train.shape[1:4]
receptive_field = 3
n_filters = 10

12

n_neurons_connected = 50
n_categories = 10

eta_vals = np.logspace(-5, 1, 7)
lmbd_vals = np.logspace(-5, 1, 7)

Final part
CNN_keras = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

for i, eta in enumerate(eta_vals):
for j, lmbd in enumerate(lmbd_vals):

CNN = create_convolutional_neural_network_keras(input_shape, receptive_field,
n_filters, n_neurons_connected, n_categories,
eta, lmbd)

CNN.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=0)
scores = CNN.evaluate(X_test, Y_test)

CNN_keras[i][j] = CNN

print("Learning rate = ", eta)
print("Lambda = ", lmbd)
print("Test accuracy: %.3f" % scores[1])
print()

Final visualization
visual representation of grid search
uses seaborn heatmap, could probably do this in matplotlib
import seaborn as sns

sns.set()

train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))

for i in range(len(eta_vals)):
for j in range(len(lmbd_vals)):

CNN = CNN_keras[i][j]

train_accuracy[i][j] = CNN.evaluate(X_train, Y_train)[1]
test_accuracy[i][j] = CNN.evaluate(X_test, Y_test)[1]

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")
ax.set_ylabel("η")
ax.set_xlabel("λ")
plt.show()

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")
ax.set_ylabel("η")
ax.set_xlabel("λ")

13

plt.show()

The CIFAR01 data set
The CIFAR10 dataset contains 60,000 color images in 10 classes, with 6,000
images in each class. The dataset is divided into 50,000 training images and
10,000 testing images. The classes are mutually exclusive and there is no overlap
between them.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

We import the data set
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

Normalize pixel values to be between 0 and 1 by dividing by 255.
train_images, test_images = train_images / 255.0, test_images / 255.0

Verifying the data set
To verify that the dataset looks correct, let’s plot the first 25 images from the
training set and display the class name below each image.

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):

plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
The CIFAR labels happen to be arrays,
which is why you need the extra index
plt.xlabel(class_names[train_labels[i][0]])

plt.show()

Set up the model
The 6 lines of code below define the convolutional base using a common pattern:
a stack of Conv2D and MaxPooling2D layers.

As input, a CNN takes tensors of shape (imageheight, imagewidth, colorchannels), ignoringthebatchsize.Ifyouarenewtothesedimensions, colorchannelsrefersto(R, G, B).Inthisexample, youwillconfigureourCNNtoprocessinputsofshape(32, 32, 3), whichistheformatofCIFARimages.Y oucandothisbypassingtheargumentinputshapetoourfirstlayer.

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

14

Let's display the architecture of our model so far.

model.summary()

You can see that the output of every Conv2D and MaxPooling2D layer is a 3D
tensor of shape (height, width, channels). The width and height dimensions tend
to shrink as you go deeper in the network. The number of output channels for
each Conv2D layer is controlled by the first argument (e.g., 32 or 64). Typically,
as the width and height shrink, you can afford (computationally) to add more
output channels in each Conv2D layer.

Add Dense layers on top
To complete our model, you will feed the last output tensor from the convolutional
base (of shape (4, 4, 64)) into one or more Dense layers to perform classification.
Dense layers take vectors as input (which are 1D), while the current output is a
3D tensor. First, you will flatten (or unroll) the 3D output to 1D, then add one
or more Dense layers on top. CIFAR has 10 output classes, so you use a final
Dense layer with 10 outputs and a softmax activation.

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
#Here's the complete architecture of our model.
model.summary()

As you can see, our (4, 4, 64) outputs were flattened into vectors of shape
(1024) before going through two dense layers.

Compile and train the model
model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))

Finally, evaluate the model
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(test_acc)

15

Recurrent neural networks: Overarching view
Till now our focus has been, including convolutional neural networks as well,
on feedforward neural networks. The output or the activations flow only in one
direction, from the input layer to the output layer.

A recurrent neural network (RNN) looks very much like a feedforward neural
network, except that it also has connections pointing backward.

RNNs are used to analyze time series data such as stock prices, and tell
you when to buy or sell. In autonomous driving systems, they can anticipate
car trajectories and help avoid accidents. More generally, they can work on
sequences of arbitrary lengths, rather than on fixed-sized inputs like all the nets
we have discussed so far. For example, they can take sentences, documents,
or audio samples as input, making them extremely useful for natural language
processing systems such as automatic translation and speech-to-text.

Set up of an RNN
See handwritten notes for week 43 and Lectures from CS231 at Stanford

A simple example
Start importing packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, SimpleRNN, LSTM, GRU
from tensorflow.keras import optimizers
from tensorflow.keras import regularizers
from tensorflow.keras.utils import to_categorical

convert into dataset matrix
def convertToMatrix(data, step):
X, Y =[], []
for i in range(len(data)-step):
d=i+step
X.append(data[i:d,])
Y.append(data[d,])

return np.array(X), np.array(Y)

step = 4
N = 1000
Tp = 800

t=np.arange(0,N)
x=np.sin(0.02*t)+2*np.random.rand(N)
df = pd.DataFrame(x)
df.head()

plt.plot(df)
plt.show()

16

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

values=df.values
train,test = values[0:Tp,:], values[Tp:N,:]

add step elements into train and test
test = np.append(test,np.repeat(test[-1,],step))
train = np.append(train,np.repeat(train[-1,],step))

trainX,trainY =convertToMatrix(train,step)
testX,testY =convertToMatrix(test,step)
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

model = Sequential()
model.add(SimpleRNN(units=32, input_shape=(1,step), activation="relu"))
model.add(Dense(8, activation="relu"))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
model.summary()
model.fit(trainX,trainY, epochs=100, batch_size=16, verbose=2)
trainPredict = model.predict(trainX)
testPredict= model.predict(testX)
predicted=np.concatenate((trainPredict,testPredict),axis=0)

trainScore = model.evaluate(trainX, trainY, verbose=0)
print(trainScore)

df = pd.DataFrame(x)
pred = pd.DataFrame(predicted)
plt.plot(df,c="b")
plt.plot(pred,c="r")
plt.show()

An extrapolation example
The following code provides an example of how recurrent neural networks can
be used to extrapolate to unknown values of physics data sets. Specifically, the
data sets used in this program come from a quantum mechanical many-body
calculation of energies as functions of the number of particles.

For matrices and calculations
import numpy as np
For machine learning (backend for keras)
import tensorflow as tf
User-friendly machine learning library
Front end for TensorFlow
import tensorflow.keras
Different methods from Keras needed to create an RNN
This is not necessary but it shortened function calls
that need to be used in the code.
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras import regularizers
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, SimpleRNN, LSTM, GRU
For timing the code

17

from timeit import default_timer as timer
For plotting
import matplotlib.pyplot as plt

The data set
datatype='VaryDimension'
X_tot = np.arange(2, 42, 2)
y_tot = np.array([-0.03077640549, -0.08336233266, -0.1446729567, -0.2116753732, -0.2830637392, -0.3581341341, -0.436462435, -0.5177783846,

-0.6019067271, -0.6887363571, -0.7782028952, -0.8702784034, -0.9649652536, -1.062292565, -1.16231451,
-1.265109911, -1.370782966, -1.479465113, -1.591317992, -1.70653767])

Formatting the Data
The way the recurrent neural networks are trained in this program differs from
how machine learning algorithms are usually trained. Typically a machine
learning algorithm is trained by learning the relationship between the x data
and the y data. In this program, the recurrent neural network will be trained
to recognize the relationship in a sequence of y values. This is type of data
formatting is typically used for time series forecasting, but it can also be used in
any extrapolation (time series forecasting is just a specific type of extrapolation
along the time axis). This method of data formatting does not use the x data
and assumes that the y data are evenly spaced.

For a standard machine learning algorithm, the training data has the form
of (x, y) so the machine learning algorithm learns to associate a y value with a
given x value. This is useful when the test data has x values within the same
range as the training data. However, for this application, the x values of the test
data are outside of the x values of the training data and the traditional method
of training a machine learning algorithm does not work as well. For this reason,
the recurrent neural network is trained on sequences of y values of the form
((y1, y2), y3), so that the network is concerned with learning the pattern of the
y data and not the relation between the x and y data. As long as the pattern of
y data outside of the training region stays relatively stable compared to what
was inside the training region, this method of training can produce accurate
extrapolations to y values far removed from the training data set.

FORMAT_DATA
def format_data(data, length_of_sequence = 2):

"""
Inputs:

data(a numpy array): the data that will be the inputs to the recurrent neural
network

length_of_sequence (an int): the number of elements in one iteration of the
sequence patter. For a function approximator use length_of_sequence = 2.

Returns:
rnn_input (a 3D numpy array): the input data for the recurrent neural network. Its

dimensions are length of data - length of sequence, length of sequence,
dimnsion of data

rnn_output (a numpy array): the training data for the neural network
Formats data to be used in a recurrent neural network.

"""

18

X, Y = [], []
for i in range(len(data)-length_of_sequence):

Get the next length_of_sequence elements
a = data[i:i+length_of_sequence]
Get the element that immediately follows that
b = data[i+length_of_sequence]
Reshape so that each data point is contained in its own array
a = np.reshape (a, (len(a), 1))
X.append(a)
Y.append(b)

rnn_input = np.array(X)
rnn_output = np.array(Y)

return rnn_input, rnn_output

Defining the Recurrent Neural Network Using Keras
#
The following method defines a simple recurrent neural network in keras consisting of one input layer, one hidden layer, and one output layer.

def rnn(length_of_sequences, batch_size = None, stateful = False):
"""

Inputs:
length_of_sequences (an int): the number of y values in "x data". This is determined

when the data is formatted
batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.

Returns:
model (a Keras model): The recurrent neural network that is built and compiled by this

method
Builds and compiles a recurrent neural network with one hidden layer and returns the model.

"""
Number of neurons in the input and output layers
in_out_neurons = 1
Number of neurons in the hidden layer
hidden_neurons = 200
Define the input layer
inp = Input(batch_shape=(batch_size,

length_of_sequences,
in_out_neurons))

Define the hidden layer as a simple RNN layer with a set number of neurons and add it to
the network immediately after the input layer
rnn = SimpleRNN(hidden_neurons,

return_sequences=False,
stateful = stateful,
name="RNN")(inp)

Define the output layer as a dense neural network layer (standard neural network layer)
#and add it to the network immediately after the hidden layer.
dens = Dense(in_out_neurons,name="dense")(rnn)
Create the machine learning model starting with the input layer and ending with the
output layer
model = Model(inputs=[inp],outputs=[dens])
Compile the machine learning model using the mean squared error function as the loss
function and an Adams optimizer.
model.compile(loss="mean_squared_error", optimizer="adam")
return model

19

Predicting New Points With A Trained Recurrent Neural
Network

def test_rnn (x1, y_test, plot_min, plot_max):
"""

Inputs:
x1 (a list or numpy array): The complete x component of the data set
y_test (a list or numpy array): The complete y component of the data set
plot_min (an int or float): the smallest x value used in the training data
plot_max (an int or float): the largest x valye used in the training data

Returns:
None.

Uses a trained recurrent neural network model to predict future points in the
series. Computes the MSE of the predicted data set from the true data set, saves
the predicted data set to a csv file, and plots the predicted and true data sets w
while also displaying the data range used for training.

"""
Add the training data as the first dim points in the predicted data array as these
are known values.
y_pred = y_test[:dim].tolist()
Generate the first input to the trained recurrent neural network using the last two
points of the training data. Based on how the network was trained this means that it
will predict the first point in the data set after the training data. All of the
brackets are necessary for Tensorflow.
next_input = np.array([[[y_test[dim-2]], [y_test[dim-1]]]])
Save the very last point in the training data set. This will be used later.
last = [y_test[dim-1]]

Iterate until the complete data set is created.
for i in range (dim, len(y_test)):

Predict the next point in the data set using the previous two points.
next = model.predict(next_input)
Append just the number of the predicted data set
y_pred.append(next[0][0])
Create the input that will be used to predict the next data point in the data set.
next_input = np.array([[last, next[0]]], dtype=np.float64)
last = next

Print the mean squared error between the known data set and the predicted data set.
print('MSE: ', np.square(np.subtract(y_test, y_pred)).mean())
Save the predicted data set as a csv file for later use
name = datatype + 'Predicted'+str(dim)+'.csv'
np.savetxt(name, y_pred, delimiter=',')
Plot the known data set and the predicted data set. The red box represents the region that was used
for the training data.
fig, ax = plt.subplots()
ax.plot(x1, y_test, label="true", linewidth=3)
ax.plot(x1, y_pred, 'g-.',label="predicted", linewidth=4)
ax.legend()
Created a red region to represent the points used in the training data.
ax.axvspan(plot_min, plot_max, alpha=0.25, color='red')
plt.show()

Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)

This is the number of points that will be used in as the training data
dim=12

Separate the training data from the whole data set

20

X_train = X_tot[:dim]
y_train = y_tot[:dim]

Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)

Create a recurrent neural network in Keras and produce a summary of the
machine learning model
model = rnn(length_of_sequences = rnn_input.shape[1])
model.summary()

Start the timer. Want to time training+testing
start = timer()
Fit the model using the training data genenerated above using 150 training iterations and a 5%
validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,

verbose=True,validation_split=0.05)

for label in ["loss","val_loss"]:
plt.plot(hist.history[label],label=label)

plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()

Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)

Other Things to Try
Changing the size of the recurrent neural network and its parameters can
drastically change the results you get from the model. The below code takes
the simple recurrent neural network from above and adds a second hidden layer,
changes the number of neurons in the hidden layer, and explicitly declares the
activation function of the hidden layers to be a sigmoid function. The loss
function and optimizer can also be changed but are kept the same as the above
network. These parameters can be tuned to provide the optimal result from
the network. For some ideas on how to improve the performance of a recurrent
neural network.

def rnn_2layers(length_of_sequences, batch_size = None, stateful = False):
"""

Inputs:
length_of_sequences (an int): the number of y values in "x data". This is determined

when the data is formatted
batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.

Returns:
model (a Keras model): The recurrent neural network that is built and compiled by this

21

https://danijar.com/tips-for-training-recurrent-neural-networks
https://danijar.com/tips-for-training-recurrent-neural-networks

method
Builds and compiles a recurrent neural network with two hidden layers and returns the model.

"""
Number of neurons in the input and output layers
in_out_neurons = 1
Number of neurons in the hidden layer, increased from the first network
hidden_neurons = 500
Define the input layer
inp = Input(batch_shape=(batch_size,

length_of_sequences,
in_out_neurons))

Create two hidden layers instead of one hidden layer. Explicitly set the activation
function to be the sigmoid function (the default value is hyperbolic tangent)
rnn1 = SimpleRNN(hidden_neurons,

return_sequences=True, # This needs to be True if another hidden layer is to follow
stateful = stateful, activation = 'sigmoid',
name="RNN1")(inp)

rnn2 = SimpleRNN(hidden_neurons,
return_sequences=False, activation = 'sigmoid',
stateful = stateful,
name="RNN2")(rnn1)

Define the output layer as a dense neural network layer (standard neural network layer)
#and add it to the network immediately after the hidden layer.
dens = Dense(in_out_neurons,name="dense")(rnn2)
Create the machine learning model starting with the input layer and ending with the
output layer
model = Model(inputs=[inp],outputs=[dens])
Compile the machine learning model using the mean squared error function as the loss
function and an Adams optimizer.
model.compile(loss="mean_squared_error", optimizer="adam")
return model

Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)

This is the number of points that will be used in as the training data
dim=12

Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]

Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)

Create a recurrent neural network in Keras and produce a summary of the
machine learning model
model = rnn_2layers(length_of_sequences = 2)
model.summary()

Start the timer. Want to time training+testing
start = timer()
Fit the model using the training data genenerated above using 150 training iterations and a 5%
validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,

verbose=True,validation_split=0.05)

This section plots the training loss and the validation loss as a function of training iteration.

22

This is not required for analyzing the couple cluster data but can help determine if the network is
being overtrained.
for label in ["loss","val_loss"]:

plt.plot(hist.history[label],label=label)

plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()

Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)

Other Types of Recurrent Neural Networks
Besides a simple recurrent neural network layer, there are two other commonly
used types of recurrent neural network layers: Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU). For a short introduction to these layers see
https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b
and https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b.

The first network created below is similar to the previous network, but it
replaces the SimpleRNN layers with LSTM layers. The second network below
has two hidden layers made up of GRUs, which are preceeded by two dense
(feeddorward) neural network layers. These dense layers "preprocess" the data
before it reaches the recurrent layers. This architecture has been shown to
improve the performance of recurrent neural networks (see the link above and
also https://arxiv.org/pdf/1807.02857.pdf.

def lstm_2layers(length_of_sequences, batch_size = None, stateful = False):
"""

Inputs:
length_of_sequences (an int): the number of y values in "x data". This is determined

when the data is formatted
batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.

Returns:
model (a Keras model): The recurrent neural network that is built and compiled by this

method
Builds and compiles a recurrent neural network with two LSTM hidden layers and returns the model.

"""
Number of neurons on the input/output layer and the number of neurons in the hidden layer
in_out_neurons = 1
hidden_neurons = 250
Input Layer
inp = Input(batch_shape=(batch_size,

length_of_sequences,
in_out_neurons))

Hidden layers (in this case they are LSTM layers instead if SimpleRNN layers)
rnn= LSTM(hidden_neurons,

return_sequences=True,
stateful = stateful,

23

https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b
https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b
https://arxiv.org/pdf/1807.02857.pdf

name="RNN", use_bias=True, activation='tanh')(inp)
rnn1 = LSTM(hidden_neurons,

return_sequences=False,
stateful = stateful,
name="RNN1", use_bias=True, activation='tanh')(rnn)

Output layer
dens = Dense(in_out_neurons,name="dense")(rnn1)
Define the midel
model = Model(inputs=[inp],outputs=[dens])
Compile the model
model.compile(loss='mean_squared_error', optimizer='adam')
Return the model
return model

def dnn2_gru2(length_of_sequences, batch_size = None, stateful = False):
"""

Inputs:
length_of_sequences (an int): the number of y values in "x data". This is determined

when the data is formatted
batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.

Returns:
model (a Keras model): The recurrent neural network that is built and compiled by this

method
Builds and compiles a recurrent neural network with four hidden layers (two dense followed by
two GRU layers) and returns the model.

"""
Number of neurons on the input/output layers and hidden layers
in_out_neurons = 1
hidden_neurons = 250
Input layer
inp = Input(batch_shape=(batch_size,

length_of_sequences,
in_out_neurons))

Hidden Dense (feedforward) layers
dnn = Dense(hidden_neurons/2, activation='relu', name='dnn')(inp)
dnn1 = Dense(hidden_neurons/2, activation='relu', name='dnn1')(dnn)
Hidden GRU layers
rnn1 = GRU(hidden_neurons,

return_sequences=True,
stateful = stateful,
name="RNN1", use_bias=True)(dnn1)

rnn = GRU(hidden_neurons,
return_sequences=False,
stateful = stateful,
name="RNN", use_bias=True)(rnn1)

Output layer
dens = Dense(in_out_neurons,name="dense")(rnn)
Define the model
model = Model(inputs=[inp],outputs=[dens])
Compile the mdoel
model.compile(loss='mean_squared_error', optimizer='adam')
Return the model
return model

Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)

This is the number of points that will be used in as the training data
dim=12

24

Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]

Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)

Create a recurrent neural network in Keras and produce a summary of the
machine learning model
Change the method name to reflect which network you want to use
model = dnn2_gru2(length_of_sequences = 2)
model.summary()

Start the timer. Want to time training+testing
start = timer()
Fit the model using the training data genenerated above using 150 training iterations and a 5%
validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,

verbose=True,validation_split=0.05)

This section plots the training loss and the validation loss as a function of training iteration.
This is not required for analyzing the couple cluster data but can help determine if the network is
being overtrained.
for label in ["loss","val_loss"]:

plt.plot(hist.history[label],label=label)

plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()

Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)

Training Recurrent Neural Networks in the Standard Way (i.e. learning the relationship between the X and Y data)
#
Finally, comparing the performace of a recurrent neural network using the standard data formatting to the performance of the network with time sequence data formatting shows the benefit of this type of data formatting with extrapolation.

Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)

This is the number of points that will be used in as the training data
dim=12

Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]

Reshape the data for Keras specifications
X_train = X_train.reshape((dim, 1))
y_train = y_train.reshape((dim, 1))

25

Create a recurrent neural network in Keras and produce a summary of the
machine learning model
Set the sequence length to 1 for regular data formatting
model = rnn(length_of_sequences = 1)
model.summary()

Start the timer. Want to time training+testing
start = timer()
Fit the model using the training data genenerated above using 150 training iterations and a 5%
validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(X_train, y_train, batch_size=None, epochs=150,

verbose=True,validation_split=0.05)

This section plots the training loss and the validation loss as a function of training iteration.
This is not required for analyzing the couple cluster data but can help determine if the network is
being overtrained.
for label in ["loss","val_loss"]:

plt.plot(hist.history[label],label=label)

plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()

Use the trained neural network to predict the remaining data points
X_pred = X_tot[dim:]
X_pred = X_pred.reshape((len(X_pred), 1))
y_model = model.predict(X_pred)
y_pred = np.concatenate((y_tot[:dim], y_model.flatten()))

Plot the known data set and the predicted data set. The red box represents the region that was used
for the training data.
fig, ax = plt.subplots()
ax.plot(X_tot, y_tot, label="true", linewidth=3)
ax.plot(X_tot, y_pred, 'g-.',label="predicted", linewidth=4)
ax.legend()
Created a red region to represent the points used in the training data.
ax.axvspan(X_tot[0], X_tot[dim], alpha=0.25, color='red')
plt.show()

Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)

Generative Models
Generative models describe a class of statistical models that are a contrast
to discriminative models. Informally we say that generative models can
generate new data instances while discriminative models discriminate between
different kinds of data instances. A generative model could generate new photos
of animals that look like ’real’ animals while a discriminative model could tell a
dog from a cat. More formally, given a data set x and a set of labels / targets y.
Generative models capture the joint probability p(x, y), or just p(x) if there are

26

no labels, while discriminative models capture the conditional probability p(y|x).
Discriminative models generally try to draw boundaries in the data space (often
high dimensional), while generative models try to model how data is placed
throughout the space.

Note: this material is thanks to Linus Ekstrøm.

Generative Adversarial Networks
Generative Adversarial Networks are a type of unsupervised machine
learning algorithm proposed by Goodfellow et. al in 2014 (short and good
article).

The simplest formulation of the model is based on a game theoretic approach,
zero sum game, where we pit two neural networks against one another. We define
two rival networks, one generator g, and one discriminator d. The generator
directly produces samples

x = g(z; θ(g)) (1)

Discriminator
The discriminator attempts to distinguish between samples drawn from the
training data and samples drawn from the generator. In other words, it tries
to tell the difference between the fake data produced by g and the actual data
samples we want to do prediction on. The discriminator outputs a probability
value given by

d(x; θ(d)) (2)

indicating the probability that x is a real training example rather than a
fake sample the generator has generated. The simplest way to formulate the
learning process in a generative adversarial network is a zero-sum game, in which
a function

v(θ(g), θ(d)) (3)

determines the reward for the discriminator, while the generator gets the
conjugate reward

−v(θ(g), θ(d)) (4)

Learning Process
During learning both of the networks maximize their own reward function, so
that the generator gets better and better at tricking the discriminator, while the
discriminator gets better and better at telling the difference between the fake
and real data. The generator and discriminator alternate on which one trains at
one time (i.e. for one epoch). In other words, we keep the generator constant
and train the discriminator, then we keep the discriminator constant to train

27

https://arxiv.org/pdf/1406.2661.pdf

the generator and repeat. It is this back and forth dynamic which lets GANs
tackle otherwise intractable generative problems. As the generator improves with
training, the discriminator’s performance gets worse because it cannot easily
tell the difference between real and fake. If the generator ends up succeeding
perfectly, the the discriminator will do no better than random guessing i.e. 50%.
This progression in the training poses a problem for the convergence criteria for
GANs. The discriminator feedback gets less meaningful over time, if we continue
training after this point then the generator is effectively training on junk data
which can undo the learning up to that point. Therefore, we stop training when
the discriminator starts outputting 1/2 everywhere.

More about the Learning Process
At convergence we have

g∗ = argmin
g

max
d

v(θ(g), θ(d)) (5)

The default choice for v is

v(θ(g), θ(d)) = Ex∼pdata log d(x) + Ex∼pmodel log(1 − d(x)) (6)

The main motivation for the design of GANs is that the learning process re-
quires neither approximate inference (variational autoencoders for example) nor
approximation of a partition function. In the case where

max
d

v(θ(g), θ(d)) (7)

is convex in θ(g)thentheprocedureisguaranteedtoconvergeandisasymptoticallyconsistent(SethLloydonQuGANs).

Additional References
This is in general not the case and it is possible to get situations where the
training process never converges because the generator and discriminator chase
one another around in the parameter space indefinitely. A much deeper discussion
on the currently open research problem of GAN convergence is available here.
To anyone interested in learning more about GANs it is a highly recommended
read. Direct quote: "In this best-performing formulation, the generator aims to
increase the log probability that the discriminator makes a mistake, rather than
aiming to decrease the log probability that the discriminator makes the correct
prediction." Another interesting read

Writing Our First Generative Adversarial Network
Let us now move on to actually implementing a GAN in tensorflow. We will
study the performance of our GAN on the MNIST dataset. This code is based
on and adapted from the google tutorial

First we import our libraries

28

https://arxiv.org/pdf/1804.09139.pdf
https://www.deeplearningbook.org/contents/generative_models.html
https://arxiv.org/abs/1701.00160
https://www.tensorflow.org/tutorials/generative/dcgan

import os
import time
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model

Next we define our hyperparameters and import our data the usual way

BUFFER_SIZE = 60000
BATCH_SIZE = 256
EPOCHS = 30

data = tf.keras.datasets.mnist.load_data()
(train_images, train_labels), (test_images, test_labels) = data
train_images = np.reshape(train_images, (train_images.shape[0],

28,
28,
1)).astype('float32')

we normalize between -1 and 1
train_images = (train_images - 127.5) / 127.5
training_dataset = tf.data.Dataset.from_tensor_slices(

train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

MNIST and GANs
Let’s have a quick look

plt.imshow(train_images[0], cmap='Greys')
plt.show()

Now we define our two models. This is where the ’magic’ happens. There are
a huge amount of possible formulations for both models. A lot of engineering
and trial and error can be done here to try to produce better performing models.
For more advanced GANs this is by far the step where you can ’make or break’
a model.

We start with the generator. As stated in the introductory text the generator
g upsamples from a random sample to the shape of what we want to predict. In
our case we are trying to predict MNIST images (28 × 28 pixels).

def generator_model():
"""
The generator uses upsampling layers tf.keras.layers.Conv2DTranspose() to
produce an image from a random seed. We start with a Dense layer taking this
random sample as an input and subsequently upsample through multiple
convolutional layers.
"""

we define our model
model = tf.keras.Sequential()

29

adding our input layer. Dense means that every neuron is connected and
the input shape is the shape of our random noise. The units need to match
in some sense the upsampling strides to reach our desired output shape.
we are using 100 random numbers as our seed
model.add(layers.Dense(units=7*7*BATCH_SIZE,

use_bias=False,
input_shape=(100,)))

we normalize the output form the Dense layer
model.add(layers.BatchNormalization())
and add an activation function to our 'layer'. LeakyReLU avoids vanishing
gradient problem
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, BATCH_SIZE)))
assert model.output_shape == (None, 7, 7, BATCH_SIZE)
even though we just added four keras layers we think of everything above
as 'one' layer

next we add our upscaling convolutional layers
model.add(layers.Conv2DTranspose(filters=128,

kernel_size=(5, 5),
strides=(1, 1),
padding='same',
use_bias=False))

model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 7, 7, 128)

model.add(layers.Conv2DTranspose(filters=64,
kernel_size=(5, 5),
strides=(2, 2),
padding='same',
use_bias=False))

model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 14, 14, 64)

model.add(layers.Conv2DTranspose(filters=1,
kernel_size=(5, 5),
strides=(2, 2),
padding='same',
use_bias=False,
activation='tanh'))

assert model.output_shape == (None, 28, 28, 1)

return model

And there we have our ’simple’ generator model. Now we move on to defining
our discriminator model d, which is a convolutional neural network based image
classifier.

def discriminator_model():
"""
The discriminator is a convolutional neural network based image classifier
"""

we define our model
model = tf.keras.Sequential()

30

model.add(layers.Conv2D(filters=64,
kernel_size=(5, 5),
strides=(2, 2),
padding='same',
input_shape=[28, 28, 1]))

model.add(layers.LeakyReLU())
adding a dropout layer as you do in conv-nets
model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(filters=128,
kernel_size=(5, 5),
strides=(2, 2),
padding='same'))

model.add(layers.LeakyReLU())
adding a dropout layer as you do in conv-nets
model.add(layers.Dropout(0.3))

model.add(layers.Flatten())
model.add(layers.Dense(1))

return model

Other Models
Let us take a look at our models. Note: double click images for bigger view.

generator = generator_model()
plot_model(generator, show_shapes=True, rankdir='LR')

discriminator = discriminator_model()
plot_model(discriminator, show_shapes=True, rankdir='LR')

Next we need a few helper objects we will use in training

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

The first object, crossentropyisourlossfunctionandthetwoothersareouroptimizers.Noticeweusethesamelearningrateforbothgandd.Thisisbecausetheyneedtoimprovetheiraccuracyatapproximatelyequalspeedstogetconvergence(notnecessarilyexactlyequal).Nowwedefineourlossfunctions

def generator_loss(fake_output):
loss = cross_entropy(tf.ones_like(fake_output), fake_output)

return loss

def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_liks(fake_output), fake_output)
total_loss = real_loss + fake_loss

return total_loss

31

Next we define a kind of seed to help us compare the learning process over
multiple training epochs.

noise_dimension = 100
n_examples_to_generate = 16
seed_images = tf.random.normal([n_examples_to_generate, noise_dimension])

Training Step
Now we have everything we need to define our training step, which we will apply
for every step in our training loop. Notice the @tf.function flag signifying that
the function is tensorflow ’compiled’. Removing this flag doubles the computation
time.

@tf.function
def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dimension])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss,
generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss,
discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,
discriminator.trainable_variables))

return gen_loss, disc_loss

Next we define a helper function to produce an output over our training epochs
to see the predictive progression of our generator model. Note: I am including
this code here, but comment it out in the training loop.

def generate_and_save_images(model, epoch, test_input):
we're making inferences here
predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')

plt.savefig(f'./images_from_seed_images/image_at_epoch_{str(epoch).zfill(3)}.png')
plt.close()
#plt.show()

32

Checkpoints
Setting up checkpoints to periodically save our model during training so that
everything is not lost even if the program were to somehow terminate while
training.

Setting up checkpoints to save model during training
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)

Now we define our training loop

def train(dataset, epochs):
generator_loss_list = []
discriminator_loss_list = []

for epoch in range(epochs):
start = time.time()

for image_batch in dataset:
gen_loss, disc_loss = train_step(image_batch)
generator_loss_list.append(gen_loss.numpy())
discriminator_loss_list.append(disc_loss.numpy())

#generate_and_save_images(generator, epoch + 1, seed_images)

if (epoch + 1) % 15 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)

print(f'Time for epoch {epoch} is {time.time() - start}')

#generate_and_save_images(generator, epochs, seed_images)

loss_file = './data/lossfile.txt'
with open(loss_file, 'w') as outfile:

outfile.write(str(generator_loss_list))
outfile.write('\n')
outfile.write('\n')
outfile.write(str(discriminator_loss_list))
outfile.write('\n')
outfile.write('\n')

To train simply call this function. Warning: this might take a long time so
there is a folder of a pretrained network already included in the repository.

train(train_dataset, EPOCHS)

And here is the result of training our model for 100 epochs

Movie 1: images_ from_ seed_ images/ generation. gif

33

Now to avoid having to train and everything, which will take a while depending
on your computer setup we now load in the model which produced the above gif.

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
restored_generator = checkpoint.generator
restored_discriminator = checkpoint.discriminator

print(restored_generator)
print(restored_discriminator)

Exploring the Latent Space
We have successfully loaded in our latest model. Let us now play around a bit
and see what kind of things we can learn about this model. Our generator takes
an array of 100 numbers. One idea can be to try to systematically change our
input. Let us try and see what we get

def generate_latent_points(number=100, scale_means=1, scale_stds=1):
latent_dim = 100
means = scale_means * tf.linspace(-1, 1, num=latent_dim)
stds = scale_stds * tf.linspace(-1, 1, num=latent_dim)
latent_space_value_range = tf.random.normal([number, latent_dim],

means,
stds,
dtype=tf.float64)

return latent_space_value_range

def generate_images(latent_points):
notice we set training to false because we are making inferences
generated_images = restored_generator.predict(latent_points)

return generated_images

def plot_result(generated_images, number=100):
obviously this assumes sqrt number is an int
fig, axs = plt.subplots(int(np.sqrt(number)), int(np.sqrt(number)),

figsize=(10, 10))

for i in range(int(np.sqrt(number))):
for j in range(int(np.sqrt(number))):

axs[i, j].imshow(generated_images[i*j], cmap='Greys')
axs[i, j].axis('off')

plt.show()

generated_images = generate_images(generate_latent_points())
plot_result(generated_images)

Getting Results
We see that the generator generates images that look like MNIST numbers:
1, 4, 7, 9. Let’s try to tweak it a bit more to see if we are able to generate a

34

similar plot where we generate every MNIST number. Let us now try to ’move’ a
bit around in the latent space. Note: decrease the plot number if these following
cells take too long to run on your computer.

plot_number = 225

generated_images = generate_images(generate_latent_points(number=plot_number,
scale_means=5,
scale_stds=1))

plot_result(generated_images, number=plot_number)

generated_images = generate_images(generate_latent_points(number=plot_number,
scale_means=-5,
scale_stds=1))

plot_result(generated_images, number=plot_number)

generated_images = generate_images(generate_latent_points(number=plot_number,
scale_means=1,
scale_stds=5))

plot_result(generated_images, number=plot_number)

Again, we have found something interesting. Moving around using our means
takes us from digit to digit, while moving around using our standard deviations
seem to increase the number of different digits! In the last image above, we
can barely make out every MNIST digit. Let us make on last plot using this
information by upping the standard deviation of our Gaussian noises.

plot_number = 400
generated_images = generate_images(generate_latent_points(number=plot_number,

scale_means=1,
scale_stds=10))

plot_result(generated_images, number=plot_number)

A pretty cool result! We see that our generator indeed has learned a distribu-
tion which qualitatively looks a whole lot like the MNIST dataset.

Interpolating Between MNIST Digits
Another interesting way to explore the latent space of our generator model is
by interpolating between the MNIST digits. This section is largely based on this
excellent blogpost by Jason Brownlee.

So let us start by defining a function to interpolate between two points in the
latent space.

def interpolation(point_1, point_2, n_steps=10):
ratios = np.linspace(0, 1, num=n_steps)
vectors = []
for i, ratio in enumerate(ratios):

vectors.append(((1.0 - ratio) * point_1 + ratio * point_2))

return tf.stack(vectors)

35

https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/
https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/

Now we have all we need to do our interpolation analysis.

plot_number = 100
latent_points = generate_latent_points(number=plot_number)
results = None
for i in range(0, 2*np.sqrt(plot_number), 2):

interpolated = interpolation(latent_points[i], latent_points[i+1])
generated_images = generate_images(interpolated)

if results is None:
results = generated_images

else:
results = tf.stack((results, generated_images))

plot_results(results, plot_number)

36

