
Data Analysis and Machine Learning:
Using Neural networks to solve ODEs

and PDEs

Kristine Baluka Hein

Department of Informatics, University of Oslo, Norway

Nov 11, 2018

Differential equations
The Universal Approximation Theorem states that a neural network can approx-
imate any function at a single hidden layer along with one input and output
layer to any given precision. Having this in mind, we will look closer at whether
a neural network manages to solve for a function in an equation.

A differential equation is an equation where the solution is a function. In the
equation, it is given some relations between the function’s derivatives subject to
some given conditions. Typically, a differential equation is solved numerically
using approximations of Taylor series. These kind of methods usually depends
of choosing step sizes along each dimension that are small enough for the
approximations to yield accurate results. As we will see in the examples, using a
neural network manages to outperform some well known methods in selected
cases. A possible way to solve the equation that we will look into, is to formulate
a trial solution involving the result from a neural network. The trial solution
should hopefully converge into the true solution. Be aware though, not all
differential equations has an analytical solution. We will stick with those that
has an analytical solution such that we can check how well the network performs.
To make the trial solution converge to the true solution, setting up the cost
function and updating the weights and biases within the neural network is crucial
for the trial solution to converge.

Description of the equation to solve for
A differential equation is a equation where the solution is a function. The
equation describes how the derivatives of the function behaves in a given domain
along with some conditions.

Given a differential equation, it is desirable to know how to reformulate it
into an equation a neural network can solve. Having decided on which activation
functions each layer should use, along with the number of hidden layers and
neurons within each layer, the changeable parameters of a neural network are
the weights and biases for each neuron in every layer in the net. If a differential
equation is reformulated into an equation where minimization of some parameters
must be done, a neural net could possibly solve this equation.

A trial solution might be tricky to find in general. Due to the Universal
Approximation Theorem, one could hope that outcome of the deep neural net
might solve a given differential equation, even though it is used in a simple trial
solution. Let us try this idea on some well-known ordinary differential equations
and thereafter try to solve for functions defined by two variables, giving partial
differential equations.

Ordinary Differential Equations
An ordinary differential equation (ODE) is an equation involving functions
having one variable.

In general, an ordinary differential equation looks like

f
(
x, g(x), g′(x), g′′(x), . . . , g(n)(x)

)
= 0 (1)

where g(x) is the function to find, and g(n)(x) is the n-th derivative of g(x).
The f

(
x, g(x), g′(x), g′′(x), . . . , g(n)(x)

)
is just a way to write that there is

an expression involving x and g(x), g′(x), g′′(x), . . . , and g(n)(x) on the left
side of the equality sign in (1). The highest order of derivative, that is the value
of n, determines to the order of the equation. The equation is referred to as a
n-th order ODE. Along with (1), some additional conditions of the function g(x)
are typically given for the solution to be unique.

The trial solution
Let the trial solution gt(x) be

gt(x) = h1(x) + h2(x,N(x, P)) (2)

where h1(x) is a function that makes gt(x) satisfy a given set of condi-
tions, N(x, P) a neural network with weights and biases described by P and
h2(x,N(x, P)) some expression involving the neural network. The role of the
function h2(x,N(x, P)), is to ensure that the output from N(x, P) is zero when
gt(x) is evaluated at the values of x where the given conditions must be satisfied.
The function h1(x) should alone make gt(x) satisfy the conditions.

But what about the network N(x, P)? As described previously, an optimiza-
tion method could be used to minimize the parameters of a neural network,
that being its weights and biases, through backward propagation. For the
minimization to be defined, we need to have a cost function at hand to minimize.

2

It is given that f
(
x, g(x), g′(x), g′′(x), . . . , g(n)(x)

)
should be equal to zero

in (1). We can choose to consider the mean squared error as the cost function
for an input x. Since we are looking at one input, the cost function is just f
squared. The cost function c (x, P) can therefore be expressed as

c(x, P) =
(
f
(
x, g(x), g′(x), g′′(x), . . . , g(n)(x)

))2
If N inputs are given as a vector ~x with elements xi for i = 1, . . . , N , the

cost function becomes

c (~x, P) = 1
N

N∑
i=1

(
f
(
xi, g(xi), g′(xi), g′′(xi), . . . , g(n)(xi)

))2 (3)

The neural net should then find some parameters P that minimizes the cost
function in (3) for a set of N training samples xi.

Minimizing the cost function using gradient descent and
automatic differentiation
To perform the minimization using gradient descent, the gradient of c (~x, P) is
needed. It might happen so that finding an analytical expression of the gradient
of c(~x, P) from (3) gets too messy, depending on which cost function one desires
to use.

Luckily, there exists libraries that makes the job for us through automatic
differentiation. Automatic differentiation is a method of finding the derivatives
numerically with very high precision.

In the forthcoming examples presenting possible usages of Autograd and
TensorFlow, it is shown how one could set up a neural network using gradient
descent solving a differential equation.

Example: Exponential decay and setting up the network
using Autograd
An exponential decay of a quantity g(x) is described by the equation

g′(x) = −γg(x) (4)

with g(0) = g0 for some chosen initial value g0.
The analytical solution of (4) is

g(x) = g0 exp (−γx) (5)

Having an analytical solution at hand, it is possible to use it to compare how
well a neural network finds a solution of (4).

In this example, a neural network will be implemented using Autograd in
order to perform backpropagation.

3

The function to solve for
The program will use a neural network to solve

g′(x) = −γg(x) (6)

where g(0) = g0 with γ and g0 being some chosen values.
In this example, γ = 2 and g0 = 10.

The trial solution
To begin with, a trial solution gt(t) must be chosen. A general trial solution for
ordinary differential equations could be

gt(x, P) = h1(x) + h2(x,N(x, P))
with h1(x) ensuring that gt(x) satisfies some conditions and h2(x,N(x, P))

an expression involving x and the output from the neural network N(x, P) with
P being the collection of the weights and biases for each layer. For now, it is
assumed that the network consists of one input layer, one hidden layer, and one
output layer.

In this network, there are no weights and bias at the input layer, so P =
{Phidden, Poutput}. If there are Nhidden neurons in the hidden layer, then Phidden
is a Nhidden × (1 + Ninput) matrix, given that there are Ninput neurons in the
input layer.

The first column in Phidden represents the bias for each neuron in the hidden
layer and the second column represents the weights for each neuron in the hidden
layer from the input layer. If there are Noutput neurons in the output layer, then
Poutput is a Noutput × (1 +Nhidden) matrix.

Its first column represents the bias of each neuron and the remaining columns
represents the weights to each neuron.

It is given that g(0) = g0. The trial solution must fulfill this condition to be
a proper solution of (6). A possible way to ensure that gt(0, P) = g0, is to let
F (N(x, P)) = x ·N(x, P) and A(x) = g0. This gives the following trial solution:

gt(x, P) = g0 + x ·N(x, P) (7)

Reformulating the problem
We wish that our neural network manages to minimize a given cost function.

A reformulation of out equation, (6), must therefore be done, such that it
describes the problem a neural network can solve for.

The neural network must find the set of weights and biases P such that the
trial solution in (7) satisfies (6).

The trial solution
gt(x, P) = g0 + x ·N(x, P)

4

has been chosen such that it already solves the condition g(0) = g0. What
remains, is to find P such that

g′t(x, P) = −γgt(x, P) (8)

is fulfilled as best as possible.
The left hand side and right hand side of (8) must be computed separately,

and then the neural network must choose weights and biases, contained in P ,
such that the sides are equal as best as possible. This means that the absolute
or squared difference between the sides must be as close to zero, ideally equal to
zero. In this case, the difference squared shows to be an appropriate measurement
of how erroneous the trial solution is with respect to P of the neural network.

This gives the following cost function our neural network must solve for:
minP

{(
g′t(x, P)− (−γgt(x, P)

)2}
(the notation minP {f(x, P)} means that we desire to find P that yields the

minimum of f(x, P))
or, in terms of weights and biases for the hidden and output layer in our

network:
minPhidden, Poutput

{(
g′t(x, {Phidden, Poutput})−(−γgt(x, {Phidden, Poutput})

)2}
for an input value x.
If the neural network evaluates gt(x, P) at more values for x, say N values

xi for i = 1, . . . , N , then the total error to minimize becomes

min
P

{ 1
N

N∑
i=1

(
g′t(xi, P)− (−γgt(xi, P)

)2} (9)

Letting ~x be a vector with elements xi and c(~x, P) = 1
N

∑
i

(
g′t(xi, P) −

(−γgt(xi, P)
)2 denote the cost function, the minimization problem that our

network must solve, becomes
minP c(~x, P)
In terms of Phidden and Poutput, this could also be expressed as

min
Phidden, Poutput

c(~x, {Phidden, Poutput})

A possible implementation of a neural network using Auto-
grad
For simplicity, it is assumed that the input is an array ~x = (x1, . . . , xN) with
N elements. It is at these points the neural network should find P such that it
fulfills (9).

First, the neural network must feed forward the inputs. This means that ~x
must be passed through an input layer, a hidden layer and a output layer. The
input layer in this case, does not need to process the data any further. The
input layer will consist of Ninput neurons, passing its element to each neuron in
the hidden layer. The number of neurons in the hidden layer will be Nhidden.

5

For the i-th in the hidden layer with weight whidden
i and bias bhidden

i , the
weighting from the j-th neuron at the input layer is:

zhidden
i,j = bhidden

i + whidden
i xj

=
(
bhidden
i whidden

i

)(1
xj

)
The result after weighting the inputs at the i-th hidden neuron can be written

as a vector:

~zhidden
i =

(
bhidden
i + whidden

i x1, b
hidden
i + whidden

i x2, . . . , b
hidden
i + whidden

i xN

)
=
(
bhidden
i whidden

i

)(1 1 . . . 1
x1 x2 . . . xN

)
= ~pTi,hiddenX

The vector ~pTi,hidden constitutes each row in Phidden, which contains the
weights for the neural network to minimize according to (9).

After having found ~zhidden
i for every i-th neuron within the hidden layer, the

vector will be sent to an activation function ai(~z).
In this example, the sigmoid function has been chosen to be the activation

function for each hidden neuron:
f(z) = 1 1+exp (−z)
It is possible to use other activations functions for the hidden layer also.
The output ~xhidden

i from each i-th hidden neuron is:

~xhidden
i = f

(
~zhidden
i

)
The outputs ~xhidden

i are then sent to the output layer.
The output layer consists of one neuron in this case, and combines the output

from each of the neurons in the hidden layers. The output layer combines the
results from the hidden layer using some weights woutput

i and biases boutput
i . In

this case, it is assumes that the number of neurons in the output layer is one.
The procedure of weighting the output neuron j in the hidden layer to the i-th

neuron in the output layer is similar as for the hidden layer described previously.

zoutput
1,j =

(
boutput
1 ~woutput

1
)(1

~xhidden
j

)
Expressing zoutput

1,j as a vector gives the following way of weighting the inputs
from the hidden layer:

output
1 =

(
boutput
1 ~woutput

1
)(1 1 . . . 1

~xhidden
1 ~xhidden

2 . . . ~xhidden
N

)
In this case we seek a continuous range of values since we are approximating

a function. This means that after computing ~zoutput
1 the neural network has

finished its feed forward step, and ~zoutput
1 is the final output of the network.

6

Backpropagation using Autograd
The next step is to decide how the parameters should be changed such that they
minimize the cost function.

The chosen cost function for this problem is
c(, P) = 1

N
∑

i

(
g′

t(xi,P)−(−γgt(xi,P)
)2

In order to minimize the cost function, an optimization method must be
chosen.

Here, gradient descent with a constant step size has been chosen.

Gradient descent
The idea of the gradient descent algorithm is to update parameters in direction
where the cost function decreases goes to a minimum.

In general, the update of some parameters ~ω given a cost function defined by
some weights ~ω, c(~x, ~ω), goes as follows:

new = ~ω − λ∇~ωc(~x, ~ω)
for a number of iterations or until

∣∣∣∣~ωnew − ~ω
∣∣∣∣ becomes smaller than some

given tolerance.
The value of λ decides how large steps the algorithm must take in the direction

of ∇~ωc(~x, ~ω). The notation ∇~ω express the gradient with respect to the elements
in ~ω.

In our case, we have to minimize the cost function c(~x, P) with respect to
the two sets of weights and biases, that is for the hidden layer Phidden and for
the output layer Poutput .

This means that Phidden and Poutput is updated by

Phidden,new = Phidden − λ∇Phiddenc(~x, P)
Poutput,new = Poutput − λ∇Poutputc(~x, P)
In general, one could risk using a cost function having gradients that are

cumbersome to derive analytically. For our case, the cost functions are just
the mean squared error. One could employ an implementation of the back
propagation for this case, but we will emphasis on how one could use automatic
differentiation in order to train the network.

However, it might be useful to know how automatic differentiation can be
used, e.g through Autograd, in order to test an implementation.

The network with one input, hidden, and output layer
Autograd will be used for later, so the numpy wrapper for Autograd must be imported
import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1 + np.exp(-z))

7

Assuming one input, hidden, and output layer
def neural_network(params, x):

Find the weights (including and biases) for the hidden and output layer.
Assume that params is a list of parameters for each layer.
The biases are the first element for each array in params,
and the weights are the remaning elements in each array in params.

w_hidden = params[0]
w_output = params[1]

Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)

Assume that the input layer does nothing to the input x
x_input = x

Hidden layer:

Add a row of ones to include bias
x_input = np.concatenate((np.ones((1,num_values)), x_input), axis = 0)

z_hidden = np.matmul(w_hidden, x_input)
x_hidden = sigmoid(z_hidden)

Output layer:

Include bias:
x_hidden = np.concatenate((np.ones((1,num_values)), x_hidden), axis = 0)

z_output = np.matmul(w_output, x_hidden)
x_output = z_output

return x_output

The trial solution using the deep neural network:
def g_trial(x,params, g0 = 10):

return g0 + x*neural_network(params,x)

The right side of the ODE:
def g(x, g_trial, gamma = 2):

return -gamma*g_trial

The cost function:
def cost_function(P, x):

Evaluate the trial function with the current parameters P
g_t = g_trial(x,P)

Find the derivative w.r.t x of the neural network
d_net_out = elementwise_grad(neural_network,1)(P,x)

Find the derivative w.r.t x of the trial function
d_g_t = elementwise_grad(g_trial,0)(x,P)

The right side of the ODE
func = g(x, g_t)

err_sqr = (d_g_t - func)**2
cost_sum = np.sum(err_sqr)

8

return cost_sum / np.size(err_sqr)

Solve the exponential decay ODE using neural network with one input, hidden, and output layer
def solve_ode_neural_network(x, num_neurons_hidden, num_iter, lmb):

Set up initial weights and biases

For the hidden layer
p0 = npr.randn(num_neurons_hidden, 2)

For the output layer
p1 = npr.randn(1, num_neurons_hidden + 1) # +1 since bias is included

P = [p0, p1]

print(’Initial cost: %g’%cost_function(P, x))

Start finding the optimal weights using gradient descent

Find the Python function that represents the gradient of the cost function
w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_grad = grad(cost_function,0)

Let the update be done num_iter times
for i in range(num_iter):

Evaluate the gradient at the current weights and biases in P.
The cost_grad consist now of two arrays;
one for the gradient w.r.t P_hidden and
one for the gradient w.r.t P_output
cost_grad = cost_function_grad(P, x)

P[0] = P[0] - lmb * cost_grad[0]
P[1] = P[1] - lmb * cost_grad[1]

print(’Final cost: %g’%cost_function(P, x))

return P

def g_analytic(x, gamma = 2, g0 = 10):
return g0*np.exp(-gamma*x)

Solve the given problem
if __name__ == ’__main__’:

Set seed such that the weight are initialized
with same weights and biases for every run.
npr.seed(15)

Decide the vales of arguments to the function to solve
N = 10
x = np.linspace(0, 1, N)

Set up the initial parameters
num_hidden_neurons = 10
num_iter = 10000
lmb = 0.001

Use the network
P = solve_ode_neural_network(x, num_hidden_neurons, num_iter, lmb)

Print the deviation from the trial solution and true solution
res = g_trial(x,P)

9

res_analytical = g_analytic(x)

print(’Max absolute difference: %g’%np.max(np.abs(res - res_analytical)))

Plot the results
plt.figure(figsize=(10,10))

plt.title(’Performance of neural network solving an ODE compared to the analytical solution’)
plt.plot(x, res_analytical)
plt.plot(x, res[0,:])
plt.legend([’analytical’,’nn’])
plt.xlabel(’x’)
plt.ylabel(’g(x)’)
plt.show()

The network with one input layer, specified number of hid-
den layers, and one output layer output layer
It is also possible to extend the construction of our network into a more general
one, allowing the network to contain more than one hidden layers.

The number of neurons within each hidden layer are given as a list of integers
in the program below.

import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1 + np.exp(-z))

The neural network with one input layer and one output layer,
but with number of hidden layers specified by the user.
def deep_neural_network(deep_params, x):

N_hidden is the number of hidden layers

N_hidden = np.size(deep_params) - 1 # -1 since params consists of
parameters to all the hidden
layers AND the output layer.

Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)

Assume that the input layer does nothing to the input x
x_input = x

Due to multiple hidden layers, define a variable referencing to the
output of the previous layer:
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias

10

x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output

The trial solution using the deep neural network:
def g_trial_deep(x,params, g0 = 10):

return g0 + x*deep_neural_network(params, x)

The right side of the ODE:
def g(x, g_trial, gamma = 2):

return -gamma*g_trial

The same cost function as before, but calls deep_neural_network instead.
def cost_function_deep(P, x):

Evaluate the trial function with the current parameters P
g_t = g_trial_deep(x,P)

Find the derivative w.r.t x of the neural network
d_net_out = elementwise_grad(deep_neural_network,1)(P,x)

Find the derivative w.r.t x of the trial function
d_g_t = elementwise_grad(g_trial_deep,0)(x,P)

The right side of the ODE
func = g(x, g_t)

err_sqr = (d_g_t - func)**2
cost_sum = np.sum(err_sqr)

return cost_sum / np.size(err_sqr)

Solve the exponential decay ODE using neural network with one input and one output layer,
but with specified number of hidden layers from the user.
def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb):

num_hidden_neurons is now a list of number of neurons within each hidden layer

The number of elements in the list num_hidden_neurons thus represents
the number of hidden layers.

Find the number of hidden layers:
N_hidden = np.size(num_neurons)

Set up initial weights and biases

11

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2)
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: %g’%cost_function_deep(P, x))

Start finding the optimal weights using gradient descent

Find the Python function that represents the gradient of the cost function
w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_deep_grad = grad(cost_function_deep,0)

Let the update be done num_iter times
for i in range(num_iter):

Evaluate the gradient at the current weights and biases in P.
The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases
in the hidden layers and output layers evaluated at x.
cost_deep_grad = cost_function_deep_grad(P, x)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_deep_grad[l]

print(’Final cost: %g’%cost_function_deep(P, x))

return P

def g_analytic(x, gamma = 2, g0 = 10):
return g0*np.exp(-gamma*x)

Solve the given problem
if __name__ == ’__main__’:

npr.seed(15)

Decide the vales of arguments to the function to solve
N = 10
x = np.linspace(0, 1, N)

Set up the initial parameters
num_hidden_neurons = np.array([10,10])
num_iter = 10000
lmb = 0.001

P = solve_ode_deep_neural_network(x, num_hidden_neurons, num_iter, lmb)

res = g_trial_deep(x,P)
res_analytical = g_analytic(x)

plt.figure(figsize=(10,10))

plt.title(’Performance of a deep neural network solving an ODE compared to the analytical solution’)
plt.plot(x, res_analytical)
plt.plot(x, res[0,:])
plt.legend([’analytical’,’dnn’])

12

plt.ylabel(’g(x)’)
plt.show()

Example: Population growth, comparing Autograd, Ten-
sorFlow, and Euler’s scheme
A logistic model of population growth assumes that a population converges
toward an equilibrium. The population growth can be modeled by

g′(t) = αg(t)(A− g(t)) (10)

where g(t) is the population density at time t, α > 0 the growth rate and
A > 0 is the maximum population number in the environment. Also, at t = 0
the population has the size g(0) = g0, where g0 is some chosen constant.

In this example, similar network as for the exponential decay using Autograd
has been used to solve the equation. However, as the implementation might
suffer from e.g numerical instability and high execution time (this might be
more apparent in the examples solving PDEs), a network has been constructed
using TensorFlow also. For comparison, the forward Euler method has been
implemented in order to see how the networks performs compared to a numerical
scheme.

Setting up the problem
Here, we will model a population g(t) in an environment having carrying capacity
A. The population follows the model

g′(t) = αg(t)(A− g(t)) (11)

where g(0) = g0.
In this example, we let α = 2, A = 1, and g0 = 1.2.

The trial solution
We will get a slightly different trial solution, as the boundary conditions are
different compared to the case for exponential decay.

A possible trial solution satisfying the condition g(0) = g0 could be

h1(t) = g0 + t ·N(t, P)

with N(t, P) being the output from the neural network with weights and
biases for each layer collected in the set P .

The analytical solution is

g(t) = Ag0

g0 + (A− g0) exp(−αAt)

13

The program using Autograd
The network will be the similar as for the exponential decay example, but with
some small modifications for our problem.

import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1 + np.exp(-z))

Function to get the parameters.
Done such that one can easily change the paramaters after one’s liking.
def get_parameters():

alpha = 2
A = 1
g0 = 1.2
return alpha, A, g0

def deep_neural_network(P, x):
N_hidden is the number of hidden layers
N_hidden = np.size(P) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)

Assume that the input layer does nothing to the input x
x_input = x

Due to multiple hidden layers, define a variable referencing to the
output of the previous layer:
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = P[l]

Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = P[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)

14

x_output = z_output

return x_output

def cost_function_deep(P, x):

Evaluate the trial function with the current parameters P
g_t = g_trial_deep(x,P)

Find the derivative w.r.t x of the trial function
d_g_t = elementwise_grad(g_trial_deep,0)(x,P)

The right side of the ODE
func = f(x, g_t)

err_sqr = (d_g_t - func)**2
cost_sum = np.sum(err_sqr)

return cost_sum / np.size(err_sqr)

The right side of the ODE:
def f(x, g_trial):

alpha,A, g0 = get_parameters()
return alpha*g_trial*(A - g_trial)

The trial solution using the deep neural network:
def g_trial_deep(x, params):

alpha,A, g0 = get_parameters()
return g0 + x*deep_neural_network(params,x)

The analytical solution:
def g_analytic(t):

alpha,A, g0 = get_parameters()
return A*g0/(g0 + (A - g0)*np.exp(-alpha*A*t))

def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb):
num_hidden_neurons is now a list of number of neurons within each hidden layer

Find the number of hidden layers:
N_hidden = np.size(num_neurons)

Set up initial weigths and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2)
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: %g’%cost_function_deep(P, x))

Start finding the optimal weigths using gradient descent

Find the Python function that represents the gradient of the cost function
w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_deep_grad = grad(cost_function_deep,0)

15

Let the update be done num_iter times
for i in range(num_iter):

Evaluate the gradient at the current weights and biases in P.
The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases
in the hidden layers and output layers evaluated at x.
cost_deep_grad = cost_function_deep_grad(P, x)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_deep_grad[l]

print(’Final cost: %g’%cost_function_deep(P, x))

return P

if __name__ == ’__main__’:
npr.seed(4155)

Decide the vales of arguments to the function to solve
Nt = 10
T = 1
t = np.linspace(0,T, Nt)

Set up the initial parameters
num_hidden_neurons = [100, 50, 25]
num_iter = 1000
lmb = 1e-3

P = solve_ode_deep_neural_network(t, num_hidden_neurons, num_iter, lmb)

g_dnn_ag = g_trial_deep(t,P)
g_analytical = g_analytic(t)

Find the maximum absolute difference between the solutons:
diff_ag = np.max(np.abs(g_dnn_ag - g_analytical))
print("The max absolute difference between the solutions is: %g"%diff_ag)

plt.figure(figsize=(10,10))

plt.title(’Performance of neural network solving an ODE compared to the analytical solution’)
plt.plot(t, g_analytical)
plt.plot(t, g_dnn_ag[0,:])
plt.legend([’analytical’,’nn’])
plt.xlabel(’t’)
plt.ylabel(’g(t)’)

plt.show()

Using forward Euler to solve the ODE
A straight-forward way of solving an ODE numerically, is to use Euler’s method.

Euler’s method uses Taylor series to approximate the value at a function f
at a step ∆x from x:

f(x+ ∆x) ≈ f(x) + ∆xf ′(x)

In our case, using Euler’s method to approximate the value of g at a step ∆t
from t yields

16

g(t+ ∆t) ≈ g(t) + ∆tg′(t)
= g(t) + ∆t

(
αg(t)(A− g(t))

) along with the condition that g(0) =
g0.

Let ti = i ·∆t where ∆t = T
Nt−1 where T is the final time our solver must

solve for and Nt the number of values for t ∈ [0, T] for i = 0, . . . , Nt − 1.

For i ≥ 1, we have that
ti = i∆t

= (i− 1)∆t+ ∆t
= ti−1 + ∆t

Now, if gi = g(ti) then

gi = g(ti)
= g(ti−1 + ∆t)
≈ g(ti−1) + ∆t

(
αg(ti−1)(A− g(ti−1))

)
= gi−1 + ∆t

(
αgi−1(A− gi−1)

) (12)

for i ≥ 1 and g0 = g(t0) = g(0) = g0.
Equation () could be implemented in the following way, extending the program

that uses the network using Autograd:

Assume that all function definitions from the example program using Autograd
are located here.

if __name__ == ’__main__’:
npr.seed(4155)

Decide the vales of arguments to the function to solve
Nt = 10
T = 1
t = np.linspace(0,T, Nt)

Set up the initial parameters
num_hidden_neurons = [100,50,25]
num_iter = 1000
lmb = 1e-3

P = solve_ode_deep_neural_network(t, num_hidden_neurons, num_iter, lmb)

g_dnn_ag = g_trial_deep(t,P)
g_analytical = g_analytic(t)

Find the maximum absolute difference between the solutons:
diff_ag = np.max(np.abs(g_dnn_ag - g_analytical))
print("The max absolute difference between the solutions is: %g"%diff_ag)

plt.figure(figsize=(10,10))

plt.title(’Performance of neural network solving an ODE compared to the analytical solution’)
plt.plot(t, g_analytical)
plt.plot(t, g_dnn_ag[0,:])
plt.legend([’analytical’,’nn’])
plt.xlabel(’t’)
plt.ylabel(’g(t)’)

17

Find an approximation to the funtion using forward Euler

alpha, A, g0 = get_parameters()
dt = T/(Nt - 1)

Perform forward Euler to solve the ODE
g_euler = np.zeros(Nt)
g_euler[0] = g0

for i in range(1,Nt):
g_euler[i] = g_euler[i-1] + dt*(alpha*g_euler[i-1]*(A - g_euler[i-1]))

Print the errors done by each method
diff1 = np.max(np.abs(g_euler - g_analytical))
diff2 = np.max(np.abs(g_dnn_ag[0,:] - g_analytical))

print(’Max absolute difference between Euler method and analytical: %g’%diff1)
print(’Max absolute difference between deep neural network and analytical: %g’%diff2)

Plot results
plt.figure(figsize=(10,10))

plt.plot(t,g_euler)
plt.plot(t,g_analytical)
plt.plot(t,g_dnn_ag[0,:])

plt.legend([’euler’,’analytical’,’dnn’])
plt.xlabel(’Time t’)
plt.ylabel(’g(t)’)

plt.show()

Running the program gives

Max absolute difference between Euler method and analytical: 0.011225
Max absolute difference between deep neural network and analytical: 0.00424909

Using TensorFlow to model logistic population growth
TensorFlow is a library widely used in the machine learning community. A
neural network can be set up in a flexible manner, where various optimization
algorithms are implemented and different types of networks can be used, making
it easier to experiment on solving differential equations using neural networks.

The general program flow in TensorFlow
Usually, a program in TensorFlow is divided into two parts; the construction
phase and the execution phase. In the construction phase, the computational
graph that TensorFlow uses to perform its calculations are set up. In the
execution phase, TensorFlow evaluates any procedure that was defined in the
construction phase.

18

Program flow in TensorFlow - Construction phase
Here, the architecture for the neural network will be set up, along with the cost
function and an optimizer class used during training of the network. Note that
TensorFlow uses a different convention for the weighting done in each neuron
in each layer within the network than in the implementation using Autograd.
The matrix-vector multiplication between the input from the previous layer and
the weighting at the neuron at current layer in the program using Autograd, is
the transpose of the convention used in TensorFlow. But it will not affect that
much our construction, as TensorFlow takes care of most of the computations.
The only thing we have to be aware of, is how the dimensions are for our inputs.

Program flow in TensorFlow - Execution phase
The computation graph has been defined, and is ready to be evaluated. In order
to get access to the graph, it has to be initialized and be runned within a Session.

The full program modeling logistic population growth using
TensorFlow

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Just to reset the graph such that it is possible to rerun this in a
Jupyter cell without resetting the whole kernel.
tf.reset_default_graph()

Set a seed to ensure getting the same results from every run
tf.set_random_seed(4155)

Nt = 10
T = 1
t = np.linspace(0,T, Nt)

The construction phase

Convert the values the trial solution is evaluated at to a tensor.
t_tf = tf.convert_to_tensor(t.reshape(-1,1),dtype=tf.float64)
zeros = tf.reshape(tf.convert_to_tensor(np.zeros(t.shape)),shape=(-1,1))

Define the parameters of the equation
alpha = tf.constant(2.,dtype=tf.float64)
A = tf.constant(1.,dtype=tf.float64)
g0 = tf.constant(1.2,dtype=tf.float64)

num_iter = 100000

Define the number of neurons at each hidden layer
num_hidden_neurons = [100,50,25]
num_hidden_layers = np.size(num_hidden_neurons)

Construct the network.
tf.name_scope is used to group each step in the construction,
just for a more organized visualization in TensorBoard

19

with tf.name_scope(’dnn’):

Input layer
previous_layer = t_tf

Hidden layers
for l in range(num_hidden_layers):

current_layer = tf.layers.dense(previous_layer, num_hidden_neurons[l], name=’hidden%d’%(l+1), activation=tf.nn.sigmoid)
previous_layer = current_layer

Output layer
dnn_output = tf.layers.dense(previous_layer, 1, name=’output’)

Define the cost function
with tf.name_scope(’cost’):

g_trial = g0 + t_tf*dnn_output
d_g_trial = tf.gradients(g_trial,t_tf)

func = alpha*g_trial*(A - g_trial)
cost = tf.losses.mean_squared_error(zeros, d_g_trial[0] - func)

Choose the method to minimize the cost function, along with a learning rate
learning_rate = 1e-2
with tf.name_scope(’train’):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
traning_op = optimizer.minimize(cost)

Set up a referance to the result from the neural network:
g_dnn_tf = None

Define a node that initializes all of the other nodes in the computational graph
used by TensorFlow:
init = tf.global_variables_initializer()

Execution phase

Start a session where the graph defined from the construction phase can be evaluated at:
with tf.Session() as sess:

Initialize the whole graph
init.run()

Evaluate the initial cost:
print(’Initial cost: %g’%cost.eval())

The training of the network:
for i in range(num_iter):

sess.run(traning_op)

If one desires to see how the cost function behaves for each iteration:
#if i % 1000 == 0:
print(cost.eval())

Training is done, and we have an approximate solution to the ODE
print(’Final cost: %g’%cost.eval())

Store the result
g_dnn_tf = g_trial.eval()

Compare with analytical solution
def get_parameters():

20

alpha = 2
A = 1
g0 = 1.2
return alpha, A, g0

def g_analytic(t):
alpha,A, g0 = get_parameters()
return A*g0/(g0 + (A - g0)*np.exp(-alpha*A*t))

g_analytical = g_analytic(t)
diff_tf = g_dnn_tf - g_analytical.reshape(-1,1)

print(’\nMax absolute difference between the analytical solution and solution from TensorFlow DNN: %g’%np.max(np.abs(diff_tf)))

Plot the result
plt.figure(figsize=(10,10))

plt.title(’Numerical solutions of the ODE’)

plt.plot(t, g_dnn_tf)
plt.plot(t, g_analytical)

plt.legend([’dnn, tensorflow’, ’exact’])
plt.xlabel(’Time t’)
plt.ylabel(’g(t)’)

plt.show()

Example: Solving the one dimensional Poisson equation
using Autograd and TensorFlow
The Poisson equation for g(x) in one dimension is

−g′′(x) = f(x) (13)

where f(x) is a given function for x ∈ (0, 1).
The conditions that g(x) is chosen to fulfill, are

g(0) = 0
g(1) = 0

This equation can be solved numerically using programs where e.g Autograd
and TensorFlow are used. The results from the networks can then be compared
to the analytical solution. In addition, it could be interesting to see how a
typical method for numerically solving second order ODEs compares to the
neural networks.

There exists many different optimization methods implemented in TensorFlow.
In the examples program using TensorFlow, it could also be of interest to see
how the choice of an optimization method affects our results. In the TensorFlow
documentation about optimizers, a list over available optimization methods are
shown.

21

https://www.tensorflow.org/versions/r1.2/api_guides/python/train#Optimizers
https://www.tensorflow.org/versions/r1.2/api_guides/python/train#Optimizers

The specific equation to solve for
Here, the function g(x) to solve for follows the equation

-g”(x) = f(x), x ∈ (0, 1)
where f(x) is a given function, along with the chosen conditions

g(0) = g(1) = 0
In this example, we consider the case when f(x) = (3x+ x2) exp(x).
For this case, a possible trial solution satisfying the conditions could be
gt(x) = x · (1− x) ·N(P, x)
The analytical solution for this problem is
g(x) = x(1 - x)exp(x)

Solving the equation using Autograd
import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
N_hidden is the number of hidden layers
N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)

Assume that the input layer does nothing to the input x
x_input = x

Due to multiple hidden layers, define a variable referencing to the
output of the previous layer:
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer

22

w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output

def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb):
num_hidden_neurons is now a list of number of neurons within each hidden layer

Find the number of hidden layers:
N_hidden = np.size(num_neurons)

Set up initial weigths and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2)
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: %g’%cost_function_deep(P, x))

Start finding the optimal weigths using gradient descent

Find the Python function that represents the gradient of the cost function
w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_deep_grad = grad(cost_function_deep,0)

Let the update be done num_iter times
for i in range(num_iter):

Evaluate the gradient at the current weights and biases in P.
The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases
in the hidden layers and output layers evaluated at x.
cost_deep_grad = cost_function_deep_grad(P, x)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_deep_grad[l]

print(’Final cost: %g’%cost_function_deep(P, x))

return P

Set up the cost function specified for this Poisson equation:

The right side of the ODE
def f(x):

return (3*x + x**2)*np.exp(x)

def cost_function_deep(P, x):

Evaluate the trial function with the current parameters P
g_t = g_trial_deep(x,P)

23

Find the derivative w.r.t x of the trial function
d2_g_t = elementwise_grad(elementwise_grad(g_trial_deep,0))(x,P)

right_side = f(x)

err_sqr = (-d2_g_t - right_side)**2
cost_sum = np.sum(err_sqr)

return cost_sum/np.size(err_sqr)

The trial solution:
def g_trial_deep(x,P):

return x*(1-x)*deep_neural_network(P,x)

The analytic solution;
def g_analytic(x):

return x*(1-x)*np.exp(x)

if __name__ == ’__main__’:
npr.seed(4155)

Decide the vales of arguments to the function to solve
Nx = 10
x = np.linspace(0,1, Nx)

Set up the initial parameters
num_hidden_neurons = [200,100]
num_iter = 1000
lmb = 1e-3

P = solve_ode_deep_neural_network(x, num_hidden_neurons, num_iter, lmb)

g_dnn_ag = g_trial_deep(x,P)
g_analytical = g_analytic(x)

Find the maximum absolute difference between the solutons:
max_diff = np.max(np.abs(g_dnn_ag - g_analytical))
print("The max absolute difference between the solutions is: %g"%max_diff)

plt.figure(figsize=(10,10))

plt.title(’Performance of neural network solving an ODE compared to the analytical solution’)
plt.plot(x, g_analytical)
plt.plot(x, g_dnn_ag[0,:])
plt.legend([’analytical’,’nn’])
plt.xlabel(’x’)
plt.ylabel(’g(x)’)
plt.show()

Comparing with a numerical scheme
The Poisson equation is possible to solve using Taylor series to approximate the
second derivative.

Using Taylor series, the second derivative can be expressed as

g′′(x) = g(x+ ∆x)− 2g(x) + g(x−∆x)
∆x2 + E∆x(x)

where ∆x is a small step size and E∆x(x) being the error term.

24

Looking away from the error terms gives an approximation to the second
derivative:

g′′(x) ≈ g(x+ ∆x)− 2g(x) + g(x−∆x)
∆x2 (14)

If xi = i∆x = xi−1 + ∆x and gi = g(xi) for i = 1, . . . Nx − 2 with Nx being
the number of values for x, (14) becomes

g′′(xi) ≈
g(xi + ∆x)− 2g(xi) + g(xi −∆x)

∆x2

= gi+1 − 2gi + gi−1

∆x2
Since we know from our problem that

−g′′(x) = f(x)
= (3x+ x2) exp(x)

along with the conditions g(0) = g(1) = 0, the following scheme can be used
to find an approximate solution for g(x) numerically:

−
(gi+1 − 2gi + gi−1

∆x2

)
= f(xi)

−gi+1 + 2gi − gi−1 = ∆x2f(xi)
(15)

for i = 1, . . . , Nx − 2 where g0 = gNx−1 = 0 and f(xi) = (3xi + x2
i) exp(xi),

which is given for our specific problem.
The equation can be rewritten into a matrix equation:

2 −1 0 . . . 0
−1 2 −1 . . . 0
...

. . .
...

0 . . . −1 2 −1
0 . . . 0 −1 2

g1
g2
...

gNx−3
gNx−2

 = ∆x2

f(x1)
f(x2)

...
f(xNx−3)
f(xNx−2)

A~g = ~f

which makes it possible to solve for the vector ~g.
We can then compare the result from this numerical scheme with the output

from our network using Autograd:

import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
N_hidden is the number of hidden layers
N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

25

Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)

Assume that the input layer does nothing to the input x
x_input = x

Due to multiple hidden layers, define a variable referencing to the
output of the previous layer:
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output

def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb):
num_hidden_neurons is now a list of number of neurons within each hidden layer

Find the number of hidden layers:
N_hidden = np.size(num_neurons)

Set up initial weigths and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2)
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: %g’%cost_function_deep(P, x))

Start finding the optimal weigths using gradient descent

26

Find the Python function that represents the gradient of the cost function
w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_deep_grad = grad(cost_function_deep,0)

Let the update be done num_iter times
for i in range(num_iter):

Evaluate the gradient at the current weights and biases in P.
The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases
in the hidden layers and output layers evaluated at x.
cost_deep_grad = cost_function_deep_grad(P, x)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_deep_grad[l]

print(’Final cost: %g’%cost_function_deep(P, x))

return P

Set up the cost function specified for this Poisson equation:

The right side of the ODE
def f(x):

return (3*x + x**2)*np.exp(x)

def cost_function_deep(P, x):

Evaluate the trial function with the current parameters P
g_t = g_trial_deep(x,P)

Find the derivative w.r.t x of the trial function
d2_g_t = elementwise_grad(elementwise_grad(g_trial_deep,0))(x,P)

right_side = f(x)

err_sqr = (-d2_g_t - right_side)**2
cost_sum = np.sum(err_sqr)

return cost_sum/np.size(err_sqr)

The trial solution:
def g_trial_deep(x,P):

return x*(1-x)*deep_neural_network(P,x)

The analytic solution;
def g_analytic(x):

return x*(1-x)*np.exp(x)

if __name__ == ’__main__’:
npr.seed(4155)

Decide the vales of arguments to the function to solve
Nx = 10
x = np.linspace(0,1, Nx)

Set up the initial parameters
num_hidden_neurons = [200,100]
num_iter = 1000
lmb = 1e-3

P = solve_ode_deep_neural_network(x, num_hidden_neurons, num_iter, lmb)

27

g_dnn_ag = g_trial_deep(x,P)
g_analytical = g_analytic(x)

Find the maximum absolute difference between the solutons:

plt.figure(figsize=(10,10))

plt.title(’Performance of neural network solving an ODE compared to the analytical solution’)
plt.plot(x, g_analytical)
plt.plot(x, g_dnn_ag[0,:])
plt.legend([’analytical’,’nn’])
plt.xlabel(’x’)
plt.ylabel(’g(x)’)

Perform the computation using the numerical scheme

dx = 1/(Nx - 1)

Set up the matrix A
A = np.zeros((Nx-2,Nx-2))

A[0,0] = 2
A[0,1] = -1

for i in range(1,Nx-3):
A[i,i-1] = -1
A[i,i] = 2
A[i,i+1] = -1

A[Nx - 3, Nx - 4] = -1
A[Nx - 3, Nx - 3] = 2

Set up the vector f
f_vec = dx**2 * f(x[1:-1])

Solve the equation
g_res = np.linalg.solve(A,f_vec)

g_vec = np.zeros(Nx)
g_vec[1:-1] = g_res

Print the differences between each method
max_diff1 = np.max(np.abs(g_dnn_ag - g_analytical))
max_diff2 = np.max(np.abs(g_vec - g_analytical))
print("The max absolute difference between the analytical solution and DNN Autograd: %g"%max_diff1)
print("The max absolute difference between the analytical solution and numerical scheme: %g"%max_diff2)

Plot the results
plt.figure(figsize=(10,10))

plt.plot(x,g_vec)
plt.plot(x,g_analytical)
plt.plot(x,g_dnn_ag[0,:])

plt.legend([’numerical scheme’,’analytical’,’dnn’])
plt.show()

The program prints out:

28

The max absolute difference between the analytical solution and DNN Autograd: 0.000464088
The max absolute difference between the analytical solution and numerical scheme: 0.00266858

Using gradient descent in TensorFlow to solve Poisson equa-
tion
The program follows the similar idea as for the logistic population model.

What has changed, is what the cost function minimizes and the trial solution.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
Construction phase

Just to reset the graph such that it is possible to rerun this in a
Jupyter cell without resetting the whole kernel.
tf.reset_default_graph()

tf.set_random_seed(4155)

Convert the values the trial solution is evaluated at to a tensor.
Nx = 10
x = np.linspace(0,1, Nx)
x_tf = tf.convert_to_tensor(x.reshape(-1,1),dtype=tf.float64)

num_iter = 10000

Define the number of neurons at each hidden layer
num_hidden_neurons = [20,10]
num_hidden_layers = np.size(num_hidden_neurons)

Construct the network.
tf.name_scope is used to group each step in the construction,
just for a more organized visualization in TensorBoard
with tf.name_scope(’dnn’):

Input layer
previous_layer = x_tf

Hidden layers
for l in range(num_hidden_layers):

current_layer = tf.layers.dense(previous_layer, num_hidden_neurons[l], name=’hidden%d’%(l+1), activation=tf.nn.sigmoid)
previous_layer = current_layer

Output layer
dnn_output = tf.layers.dense(previous_layer, 1, name=’output’)

Define the cost function
with tf.name_scope(’cost’):

g_trial = x_tf*(1-x_tf)*dnn_output
d_g_trial = tf.gradients(g_trial,x_tf)
d2_g_trial = tf.gradients(d_g_trial,x_tf)

right_side = (3*x_tf + x_tf**2)*tf.exp(x_tf)

err = tf.square(-d2_g_trial[0] - right_side)
cost = tf.reduce_sum(err, name = ’cost’)

29

Choose the method to minimize the cost function, along with a learning rate
learning_rate = 1e-2
with tf.name_scope(’train’):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
traning_op = optimizer.minimize(cost)

g_dnn_tf = None

Define a node that initializes all of the other nodes in the computational graph
used by TensorFlow:
init = tf.global_variables_initializer()

Execution phase

Start a session where the graph defined from the construction phase can be evaluated at:

with tf.Session() as sess:
Initialize the whole graph
init.run()

Evaluate the initial cost:
print(’Initial cost: %g’%cost.eval())

The traning of the network:
for i in range(num_iter):

sess.run(traning_op)

Training is done, and we have an approximate solution to the ODE
print(’Final cost: %g’%cost.eval())

Store the result
g_dnn_tf = g_trial.eval()

writer = tf.summary.FileWriter("./output", sess.graph)
writer.close()

Evaluate the analytical function to compare with
def g_analytic(x):

return x*(1-x)*np.exp(x)

g_analytical = g_analytic(x)

diff_tf = g_dnn_tf - g_analytical.reshape(-1,1)

print(’\nMax absolute difference between the analytical solution and solution from TensorFlow DNN: %g’%np.max(np.abs(diff_tf)))

Plot the result
plt.figure(figsize=(10,10))

plt.title(’Numerical solutions of the ODE’)

plt.plot(x, g_dnn_tf)
plt.plot(x, g_analytical)

plt.legend([’dnn, tensorflow’,’exact’])
plt.xlabel(’x’)
plt.ylabel(’g(x)’)

plt.show()

30

Using a different optimization algorithm implemented in
TensorFlow to solve Poisson equation
We can see that the results using GradientDescentOptimizer seems to converge
towards the analytical solution. But there exists many other methods for
optimization also, see the TensorFlow documentation on Optimizers.

Adam is an optimization algorithm that changes its learning rates accordingly
to the function it tries to minimize for every iteration. The algorithm is described
in this paper. How much an optimization algorithm has to say for the network to
converge, could be interesting to experiment with. Using the same TensorFlow
program as before, the only change to do, is to replace the variable optimizer.

In the program that uses TensorFlow to solve for the Poisson equation, change
the line

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

to

optimizer = tf.train.AdamOptimizer(learning_rate)

The program using the Adam optimizer with a different initial learning rate
yields indeed an interesting result:
Max absolute difference between the analytical solution and solution from TensorFlow DNN: 7.11243e-05

Partial Differential Equations
A partial differential equation (PDE) has a solution here the function is defined
by multiple variables. The equation may involve all kinds of combinations of
which variables the function is differentiated with respect to.

In general, a partial differential equation for a function g(x1, . . . , xN) with
N variables may be expressed as

f

(
x1, . . . , xN ,

∂g(x1, . . . , xN)
∂x1

, . . . ,
∂g(x1, . . . , xN)

∂xN
,
∂g(x1, . . . , xN)

∂x1∂x2
, . . . ,

∂ng(x1, . . . , xN)
∂xnN

)
= 0

(16)
where f is an expression involving all kinds of possible mixed derivatives of

g(x1, . . . , xN) up to an order n. In order for the solution to be unique, some
additional conditions must also be given.

The problem our network must solve for, is similar to the ODE case. We
must have a trial solution gt at hand.

For instance, the trial solution could be expressed as

gt(x1, . . . , xN) = h1(x1, . . . , xN) + h2(x1, . . . , xN , N(x1, . . . , xN , P))

where h1(x1, . . . , xN) is a function that ensures gt(x1, . . . , xN) satisfies some
given conditions. The neural network N(x1, . . . , xN , P) has weights and biases

31

https://www.tensorflow.org/versions/r1.2/api_guides/python/train#Optimizers
https://arxiv.org/pdf/1412.6980.pdf

described by P and h2(x1, . . . , xN , N(x1, . . . , xN , P)) is an expression using the
output from the neural network in some way.

The role of the function h2(x1, . . . , xN , N(x1, . . . , xN , P)), is to ensure that
the output of N(x1, . . . , xN , P) is zero when gt(x1, . . . , xN) is evaluated at the
values of x1, . . . , xN where the given conditions must be satisfied. The function
h1(x1, . . . , xN) should alone make gt(x1, . . . , xN) satisfy the conditions.

The network tries then the minimize the cost function following the same
ideas as described for the ODE case, but now with more than one variables to
consider. The concept still remains the same; find a set of parameters P such
that the expression f in (16) is as close to zero as possible.

As for the ODE case, the cost function is the mean squared error that the
network must try to minimize. The cost function for the network to minimize is

c (x1, . . . , xN , P) =
(
f

(
x1, . . . , xN ,

∂g(x1, . . . , xN)
∂x1

, . . . ,
∂g(x1, . . . , xN)

∂xN
,
∂g(x1, . . . , xN)

∂x1∂x2
, . . . ,

∂ng(x1, . . . , xN)
∂xnN

))2

If we let ~x =
(
x1, . . . , xN

)
be an array containing the values for x1, . . . , xN

respectively, the cost function can be reformulated into the following:

c (~x, P) = f

((
~x,
∂g(~x)
∂x1

, . . . ,
∂g(~x)
∂xN

,
∂g(~x)
∂x1∂x2

, . . . ,
∂ng(~x)
∂xnN

))2

If we also have M different sets of values for x1, . . . , xN , that is ~xi =(
x

(i)
1 , . . . , x

(i)
N

)
for i = 1, . . . ,M being the rows in matrix X, the cost func-

tion can be generalized into

c (X,P) =
M∑
i=1

f

((
~xi,

∂g(~xi)
∂x1

, . . . ,
∂g(~xi)
∂xN

,
∂g(~xi)
∂x1∂x2

, . . . ,
∂ng(~xi)
∂xnN

))2

Example: The diffusion equation
In one spatial dimension, the equation reads

∂g(x, t)
∂t

= ∂2g(x, t)
∂x2

where a possible choice of conditions are

g(0, t) = 0, t ≥ 0
g(1, t) = 0, t ≥ 0
g(x, 0) = u(x), x ∈ [0, 1]

with u(x) being some given function.

32

Defining the problem
For this case, we want to find g(x, t) such that

∂g(x, t)
∂t

= ∂2g(x, t)
∂x2 (17)

and

g(0, t) = 0, t ≥ 0
g(1, t) = 0, t ≥ 0
g(x, 0) = u(x), x ∈ [0, 1]

with u(x) = sin(πx).
First, let us set up the deep neural network. The deep neural network will

follow the same structure as discussed in the examples solving the ODEs. First,
we will look into how Autograd could be used in a network tailored to solve for
bivariate functions.

Setting up the network using Autograd
The only change to do here, is to extend our network such that functions of
multiple parameters are correctly handled. In this case we have two variables
in our function to solve for, that is time t and position x. The variables will
be represented by a one-dimensional array in the program. The program will
evaluate the network at each possible pair (x, t), given an array for the desired
x-values and t-values to approximate the solution at.

def sigmoid(z):
return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
x is now a point and a 1D numpy array; make it a column vector
num_coordinates = np.size(x,0)
x = x.reshape(num_coordinates,-1)

num_points = np.size(x,1)

N_hidden is the number of hidden layers
N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

Assume that the input layer does nothing to the input x
x_input = x
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias

33

x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output[0][0]

Setting up the network using Autograd; The trial solution
The cost function must then iterate through the given arrays containing values
for x and t, defines a point (x, t) the deep neural network and the trial solution
is evaluated at, and then finds the Jacobian of the trial solution.

A possible trial solution for this PDE is

gt(x, t) = h1(x, t) + x(1− x)tN(x, t, P)

with A(x, t) being a function ensuring that gt(x, t) satisfies our given con-
ditions, and N(x, t, P) being the output from the deep neural network using
weights and biases for each layer from P .

To fulfill the conditions, A(x, t) could be:

h1(x, t) = (1− t)
(
u(x)−

(
(1− x)u(0) + xu(1)

))
= (1− t)u(x) = (1− t) sin(πx)

since (0) = u(1) = 0 and u(x) = sin(πx).
The Jacobian is used because the program must find the derivative of the

trial solution with respect to x and t.
This gives the necessity of computing the Jacobian matrix, as we want to

evaluate the gradient with respect to x and t (note that the Jacobian of a
scalar-valued multivariate function is simply its gradient).

In Autograd, the differentiation is by default done with respect to the first
input argument of your Python function. Since the points is an array representing
x and t, the Jacobian is calculated using the values of x and t.

To find the second derivative with respect to x and t, the Jacobian can be
found for the second time. The result is a Hessian matrix, which is the matrix
containing all the possible second order mixed derivatives of g(x, t).

34

Set up the trial function:
def u(x):

return np.sin(np.pi*x)

def g_trial(point,P):
x,t = point
return (1-t)*u(x) + x*(1-x)*t*deep_neural_network(P,point)

The right side of the ODE:
def f(point):

return 0.

The cost function:
def cost_function(P, x, t):

cost_sum = 0

g_t_jacobian_func = jacobian(g_trial)
g_t_hessian_func = hessian(g_trial)

for x_ in x:
for t_ in t:

point = np.array([x_,t_])

g_t = g_trial(point,P)
g_t_jacobian = g_t_jacobian_func(point,P)
g_t_hessian = g_t_hessian_func(point,P)

g_t_dt = g_t_jacobian[1]
g_t_d2x = g_t_hessian[0][0]

func = f(point)

err_sqr = ((g_t_dt - g_t_d2x) - func)**2
cost_sum += err_sqr

return cost_sum

Setting up the network using Autograd; The full program
Having set up the network, along with the trial solution and cost function, we
can now see how the deep neural network performs by comparing the results to
the analytical solution.

The analytical solution of our problem is

g(x, t) = exp(−π2t) sin(πx)

A possible way to implement a neural network solving the PDE, is given
below. Be aware, though, that it is fairly slow for the parameters used. A better
result is possible, but requires more iterations, and thus longer time to complete.

Using only 20 neurons in one hidden layer, the program managed to make
the trial solution have the maximum absolute error of 0.0075. The execution
time, however, was approximately one day and 14 hours on a computer having
Intel i7-7560U 2.4 GHz CPU.

Indeed, the program below is not optimal in its implementation, but rather
serves as an example on how to implement and use a neural network to solve a

35

PDE. Using TensorFlow in the next example sovling the wave equation, has a
much better execution time.

import autograd.numpy as np
from autograd import jacobian,hessian,grad
import autograd.numpy.random as npr
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d

Set up the network

def sigmoid(z):
return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
x is now a point and a 1D numpy array; make it a column vector
num_coordinates = np.size(x,0)
x = x.reshape(num_coordinates,-1)

num_points = np.size(x,1)

N_hidden is the number of hidden layers
N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

Assume that the input layer does nothing to the input x
x_input = x
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output[0][0]

Define the trial solution and cost function
def u(x):

return np.sin(np.pi*x)

36

def g_trial(point,P):
x,t = point
return (1-t)*u(x) + x*(1-x)*t*deep_neural_network(P,point)

The right side of the ODE:
def f(point):

return 0.

The cost function:
def cost_function(P, x, t):

cost_sum = 0

g_t_jacobian_func = jacobian(g_trial)
g_t_hessian_func = hessian(g_trial)

for x_ in x:
for t_ in t:

point = np.array([x_,t_])

g_t = g_trial(point,P)
g_t_jacobian = g_t_jacobian_func(point,P)
g_t_hessian = g_t_hessian_func(point,P)

g_t_dt = g_t_jacobian[1]
g_t_d2x = g_t_hessian[0][0]

func = f(point)

err_sqr = ((g_t_dt - g_t_d2x) - func)**2
cost_sum += err_sqr

return cost_sum /(np.size(x)*np.size(t))

For comparison, define the analytical solution
def g_analytic(point):

x,t = point
return np.exp(-np.pi**2*t)*np.sin(np.pi*x)

Set up a function for training the network to solve for the equation
def solve_pde_deep_neural_network(x,t, num_neurons, num_iter, lmb):

Set up initial weigths and biases
N_hidden = np.size(num_neurons)

Set up initial weigths and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2 + 1) # 2 since we have two points, +1 to include bias
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: ’,cost_function(P, x, t))

cost_function_grad = grad(cost_function,0)

Let the update be done num_iter times
for i in range(num_iter):

37

cost_grad = cost_function_grad(P, x , t)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_grad[l]

print(’Final cost: ’,cost_function(P, x, t))

return P

if __name__ == ’__main__’:
Use the neural network:
npr.seed(15)

Decide the vales of arguments to the function to solve
Nx = 10; Nt = 10
x = np.linspace(0, 1, Nx)
t = np.linspace(0,1,Nt)

Set up the parameters for the network
num_hidden_neurons = [100, 25]
num_iter = 250
lmb = 0.01

P = solve_pde_deep_neural_network(x,t, num_hidden_neurons, num_iter, lmb)

Store the results
g_dnn_ag = np.zeros((Nx, Nt))
G_analytical = np.zeros((Nx, Nt))
for i,x_ in enumerate(x):

for j, t_ in enumerate(t):
point = np.array([x_, t_])
g_dnn_ag[i,j] = g_trial(point,P)

G_analytical[i,j] = g_analytic(point)

Find the map difference between the analytical and the computed solution
diff_ag = np.abs(g_dnn_ag - G_analytical)
print(’Max absolute difference between the analytical solution and the network: %g’%np.max(diff_ag))

Plot the solutions in two dimensions, that being in position and time

T,X = np.meshgrid(t,x)

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Solution from the deep neural network w/ %d layer’%len(num_hidden_neurons))
s = ax.plot_surface(T,X,g_dnn_ag,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Analytical solution’)
s = ax.plot_surface(T,X,G_analytical,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Difference’)

38

s = ax.plot_surface(T,X,diff_ag,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

Take some slices of the 3D plots just to see the solutions at particular times
indx1 = 0
indx2 = int(Nt/2)
indx3 = Nt-1

t1 = t[indx1]
t2 = t[indx2]
t3 = t[indx3]

Slice the results from the DNN
res1 = g_dnn_ag[:,indx1]
res2 = g_dnn_ag[:,indx2]
res3 = g_dnn_ag[:,indx3]

Slice the analytical results
res_analytical1 = G_analytical[:,indx1]
res_analytical2 = G_analytical[:,indx2]
res_analytical3 = G_analytical[:,indx3]

Plot the slices
plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t1)
plt.plot(x, res1)
plt.plot(x,res_analytical1)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t2)
plt.plot(x, res2)
plt.plot(x,res_analytical2)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t3)
plt.plot(x, res3)
plt.plot(x,res_analytical3)
plt.legend([’dnn’,’analytical’])

plt.show()

Example: Solving the wave equation using Autograd and
TensorFlow
The wave equation is

∂2g(x, t)
∂t2

= c2
∂2g(x, t)
∂x2

with c being the specified wave speed.

39

Here, the chosen conditions are

g(0, t) = 0
g(1, t) = 0
g(x, 0) = u(x)

∂g(x, t)
∂t

∣∣∣
t=0

= v(x)

where ∂g(x,t)
∂t

∣∣∣
t=0

means the derivative of g(x, t) with respect to t is evaluated at
t = 0, and u(x) and v(x) being given functions.

The problem to solve for
The wave equation to solve for, is

∂2g(x, t)
∂t2

= c2
∂2g(x, t)
∂x2 (18)

where c is the given wave speed. The chosen conditions for this equation are

g(0, t) = 0, t ≥ 0
g(1, t) = 0, t ≥ 0
g(x, 0) = u(x), x ∈ [0, 1]

∂g(x, t)
∂t

∣∣∣
t=0

= v(x), x ∈ [0, 1]
In this example, let c = 1 and u(x) = sin(πx) and v(x) = −π sin(πx).

The trial solution
Setting up the network is done in similar matter as for the example of solving
the diffusion equation. The only things we have to change, is the trial solution
such that it satisfies the conditions from () and the cost function.

The trial solution becomes slightly different since we have other conditions
than in the example of solving the diffusion equation. Here, a possible trial
solution gt(x, t) is

gt(x, t) = h1(x, t) + x(1− x)t2N(x, t, P)

where

h1(x, t) = (1− t2)u(x) + tv(x)

Note that this trial solution satisfies the conditions only if u(0) = v(0) =
u(1) = v(1) = 0, which is the case in this example.

40

The analytical solution
The analytical solution for our specific problem, is

g(x, t) = sin(πx) cos(πt)− sin(πx) sin(πt)

Solving the wave equation - the full program using Auto-
grad

import autograd.numpy as np
from autograd import hessian,grad
import autograd.numpy.random as npr
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d

Set up the trial function:
def u(x):

return np.sin(np.pi*x)

def v(x):
return -np.pi*np.sin(np.pi*x)

def h1(point):
x,t = point
return (1 - t**2)*u(x) + t*v(x)

def g_trial(point,P):
x,t = point
return h1(point) + x*(1-x)*t**2*deep_neural_network(P,point)

Define the cost function
def cost_function(P, x, t):

cost_sum = 0

g_t_hessian_func = hessian(g_trial)

for x_ in x:
for t_ in t:

point = np.array([x_,t_])

g_t_hessian = g_t_hessian_func(point,P)

g_t_d2x = g_t_hessian[0][0]
g_t_d2t = g_t_hessian[1][1]

err_sqr = ((g_t_d2t - g_t_d2x))**2
cost_sum += err_sqr

return cost_sum / (np.size(t) * np.size(x))

The neural network
def sigmoid(z):

return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
x is now a point and a 1D numpy array; make it a column vector
num_coordinates = np.size(x,0)

41

x = x.reshape(num_coordinates,-1)

num_points = np.size(x,1)

N_hidden is the number of hidden layers
N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

Assume that the input layer does nothing to the input x
x_input = x
x_prev = x_input

Hidden layers:

for l in range(N_hidden):
From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]

Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)

Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden

Output layer:

Get the weights and bias for this layer
w_output = deep_params[-1]

Include bias:
x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

z_output = np.matmul(w_output, x_prev)
x_output = z_output

return x_output[0][0]

The analytical solution
def g_analytic(point):

x,t = point
return np.sin(np.pi*x)*np.cos(np.pi*t) - np.sin(np.pi*x)*np.sin(np.pi*t)

def solve_pde_deep_neural_network(x,t, num_neurons, num_iter, lmb):
Set up initial weigths and biases
N_hidden = np.size(num_neurons)

Set up initial weigths and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2 + 1) # 2 since we have two points, +1 to include bias
for l in range(1,N_hidden):

P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1) # +1 since bias is included

print(’Initial cost: ’,cost_function(P, x, t))

42

cost_function_grad = grad(cost_function,0)

Let the update be done num_iter times
for i in range(num_iter):

cost_grad = cost_function_grad(P, x , t)

for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_grad[l]

print(’Final cost: ’,cost_function(P, x, t))

return P

if __name__ == ’__main__’:
Use the neural network:
npr.seed(15)

Decide the vales of arguments to the function to solve
Nx = 10; Nt = 10
x = np.linspace(0, 1, Nx)
t = np.linspace(0,1,Nt)

Set up the parameters for the network
num_hidden_neurons = [50,20]
num_iter = 1000
lmb = 0.01

P = solve_pde_deep_neural_network(x,t, num_hidden_neurons, num_iter, lmb)

Store the results
res = np.zeros((Nx, Nt))
res_analytical = np.zeros((Nx, Nt))
for i,x_ in enumerate(x):

for j, t_ in enumerate(t):
point = np.array([x_, t_])
res[i,j] = g_trial(point,P)

res_analytical[i,j] = g_analytic(point)

diff = np.abs(res - res_analytical)
print("Max difference between analytical and solution from nn: %g"%np.max(diff))

Plot the solutions in two dimensions, that being in position and time

T,X = np.meshgrid(t,x)

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Solution from the deep neural network w/ %d layer’%len(num_hidden_neurons))
s = ax.plot_surface(T,X,res,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Analytical solution’)
s = ax.plot_surface(T,X,res_analytical,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)

43

ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Difference’)
s = ax.plot_surface(T,X,diff,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

Take some slices of the 3D plots just to see the solutions at particular times
indx1 = 0
indx2 = int(Nt/2)
indx3 = Nt-1

t1 = t[indx1]
t2 = t[indx2]
t3 = t[indx3]

Slice the results from the DNN
res1 = res[:,indx1]
res2 = res[:,indx2]
res3 = res[:,indx3]

Slice the analytical results
res_analytical1 = res_analytical[:,indx1]
res_analytical2 = res_analytical[:,indx2]
res_analytical3 = res_analytical[:,indx3]

Plot the slices
plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t1)
plt.plot(x, res1)
plt.plot(x,res_analytical1)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t2)
plt.plot(x, res2)
plt.plot(x,res_analytical2)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t3)
plt.plot(x, res3)
plt.plot(x,res_analytical3)
plt.legend([’dnn’,’analytical’])

plt.show()

Solving the wave equation - the full program using Tensor-
Flow
As the program using Autograd is fairly slow, one could hope that using Tensor-
Flow could make a naive implementation faster, and more numerically robust.

In addition, having TensorFlow at hand, it could be easier to experiment
with different optimization algorithms, and other constructions of the network.

The following program solves the given wave equation much faster,

44

import tensorflow as tf
import numpy as np
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d

Nx = 10
x_np = np.linspace(0,1,Nx)

Nt = 10
t_np = np.linspace(0,1,Nt)

X,T = np.meshgrid(x_np, t_np)

x = X.ravel()
t = T.ravel()

The construction phase

zeros = tf.reshape(tf.convert_to_tensor(np.zeros(x.shape)),shape=(-1,1))
x = tf.reshape(tf.convert_to_tensor(x),shape=(-1,1))
t = tf.reshape(tf.convert_to_tensor(t),shape=(-1,1))

points = tf.concat([x,t],1)

num_iter = 100000
num_hidden_neurons = [90]

X = tf.convert_to_tensor(X)
T = tf.convert_to_tensor(T)

with tf.variable_scope(’dnn’):
num_hidden_layers = np.size(num_hidden_neurons)

previous_layer = points

for l in range(num_hidden_layers):
current_layer = tf.layers.dense(previous_layer, num_hidden_neurons[l],activation=tf.nn.sigmoid)
previous_layer = current_layer

dnn_output = tf.layers.dense(previous_layer, 1)

def u(x):
return tf.sin(np.pi*x)

def v(x):
return -np.pi*tf.sin(np.pi*x)

with tf.name_scope(’loss’):
g_trial = (1 - t**2)*u(x) + t*v(x) + x*(1-x)*t**2*dnn_output

g_trial_d2t = tf.gradients(tf.gradients(g_trial,t),t)
g_trial_d2x = tf.gradients(tf.gradients(g_trial,x),x)

loss = tf.losses.mean_squared_error(zeros, g_trial_d2t[0] - g_trial_d2x[0])

learning_rate = 0.01
with tf.name_scope(’train’):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

45

traning_op = optimizer.minimize(loss)

init = tf.global_variables_initializer()

g_analytic = tf.sin(np.pi*x)*tf.cos(np.pi*t) - tf.sin(np.pi*x)*tf.sin(np.pi*t)
g_dnn = None

The execution phase
with tf.Session() as sess:

init.run()
for i in range(num_iter):

sess.run(traning_op)

If one desires to see how the cost function behaves during training
#if i % 100 == 0:
print(loss.eval())

g_analytic = g_analytic.eval()
g_dnn = g_trial.eval()

Compare with the analutical solution
diff = np.abs(g_analytic - g_dnn)
print(’Max absolute difference between analytical solution and TensorFlow DNN = ’,np.max(diff))

G_analytic = g_analytic.reshape((Nt,Nx))
G_dnn = g_dnn.reshape((Nt,Nx))

diff = np.abs(G_analytic - G_dnn)

Plot the results

X,T = np.meshgrid(x_np, t_np)

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Solution from the deep neural network w/ %d layer’%len(num_hidden_neurons))
s = ax.plot_surface(X,T,G_dnn,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Analytical solution’)
s = ax.plot_surface(X,T,G_analytic,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection=’3d’)
ax.set_title(’Difference’)
s = ax.plot_surface(X,T,diff,linewidth=0,antialiased=False,cmap=cm.viridis)
ax.set_xlabel(’Time t’)
ax.set_ylabel(’Position x’);

Take some 3D slices

indx1 = 0
indx2 = int(Nt/2)
indx3 = Nt-1

46

t1 = t_np[indx1]
t2 = t_np[indx2]
t3 = t_np[indx3]

Slice the results from the DNN
res1 = G_dnn[indx1,:]
res2 = G_dnn[indx2,:]
res3 = G_dnn[indx3,:]

Slice the analytical results
res_analytical1 = G_analytic[indx1,:]
res_analytical2 = G_analytic[indx2,:]
res_analytical3 = G_analytic[indx3,:]

Plot the slices
plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t1)
plt.plot(x_np, res1)
plt.plot(x_np,res_analytical1)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t2)
plt.plot(x_np, res2)
plt.plot(x_np,res_analytical2)
plt.legend([’dnn’,’analytical’])

plt.figure(figsize=(10,10))
plt.title("Computed solutions at time = %g"%t3)
plt.plot(x_np, res3)
plt.plot(x_np,res_analytical3)
plt.legend([’dnn’,’analytical’])

plt.show()

The program manages to find a solution having max absolute difference to
the analytical at approximately 0.0059, by just using some minutes! It was found,
by some testing, that one hidden layer with 90 neurons actually performed well.

Resources
1. Artificial neural networks for solving ordinary and partial differential

equations by I.E. Lagaris et al

2. Neural networks for solving differential equations by A. Honchar

3. Solving differential equations using neural networks by M.M Chiaramonte
and M. Kiener

4. Introduction to Partial Differential Equations by A. Tveitio, R. Winther

47

https://pdfs.semanticscholar.org/d061/df393e0e8fbfd0ea24976458b7d42419040d.pdf
https://pdfs.semanticscholar.org/d061/df393e0e8fbfd0ea24976458b7d42419040d.pdf
https://becominghuman.ai/neural-networks-for-solving-differential-equations-fa230ac5e04c
http://cs229.stanford.edu/proj2013/ChiaramonteKiener-SolvingDifferentialEquationsUsingNeuralNetworks.pdf
http://cs229.stanford.edu/proj2013/ChiaramonteKiener-SolvingDifferentialEquationsUsingNeuralNetworks.pdf
https://www.springer.com/us/book/9783540225515

