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Why Bayesian Statistics?
We have already made ourselves familiar with elements of a statistical data

analysis via quantities like the bias-variance tradeoff as well as some central
distribution functions such as the Normal distribution, the binomial distribution
and other probability distribution functions.

In essentially all the Machine Learning algorithms we have studied, our
focus has been on a so-called frequentist approach, where knowledge of an
underlying likelihood function has not been emphasized. Our data, whether
we had a classification or a regression problem, have been our central points of
departure.

Here we wish to merge this approach with the derivation of a likelihood
function which can be used to make prediction on how our system under study
evolves. We will venture into the realm of what is called Bayesian Neural
Networks. To get an overarching view on what this entails, the following figure
conveys the essential differences between a standard Neural network that we
have met earlier and a Bayesian Neural Network. In order to get there, we need
to present some of the basic elements of Bayesian statistics, starting with the
product rule and Bayes’ theorem.

Inference
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Inference: “the act of passing from one proposition, statement or judgment
considered as true to another whose truth is believed to follow from that
of the former” (Webster)
Do premises A,B, . . .→ hypothesis, H?

Deductive inference: Premises allow definite determination of truth/falsity
of H (syllogisms, symbolic logic, Boolean algebra)
B(H|A,B, ...) = 0 or 1

Inductive inference: Premises bear on truth/falsity of H, but don’t allow its
definite determination (weak syllogisms, analogies)
A,B,C,D share properties x, y, z; E has properties x, y
→ E probably has property z.

Statistical Inference

• Quantify the strength of inductive inferences from facts, in the form of data
(D), and other premises, e.g. models, to hypotheses about the phenomena
producing the data.

• Quantify via probabilities, or averages calculated using probabilities. Fre-
quentists (F) and Bayesians (B) use probabilities very differently for this.

• To the pioneers such as Bernoulli, Bayes and Laplace, a probability rep-
resented a degree-of-belief or plausability: how much they thought that
something as true based on the evidence at hand. This is the Bayesian
approach.

• To the 19th century scholars, this seemed too vague and subjective. They
redefined probability as the long run relative frequency with which an event
occurred, given (infinitely) many repeated (experimental) trials.

Some history
Adapted from D.S. Sivia1:

Although the frequency definition appears to be more objective, its
range of validity is also far more limited. For example, Laplace
used (his) probability theory to estimate the mass of Saturn, given
orbital data that were available to him from various astronomical
observatories. In essence, he computed the posterior pdf for the mass
M , given the data and all the relevant background information I (such
as a knowledge of the laws of classical mechanics): prob(M|data,I);
this is shown schematically in the figure [Fig. 1.2].

1Sivia, Devinderjit, and John Skilling. Data Analysis : A Bayesian Tutorial, OUP Oxford,
2006
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To Laplace, the (shaded) area under the posterior pdf curve between
m1 and m2 was a measure of how much he believed that the mass of
Saturn lay in the range m1 ≤M ≤ m2. As such, the position of the
maximum of the posterior pdf represents a best estimate of the mass;
its width, or spread, about this optimal value gives an indication of
the uncertainty in the estimate. Laplace stated that: ‘ . . . it is a bet
of 11,000 to 1 that the error of this result is not 1/100th of its value.’
He would have won the bet, as another 150 years’ accumulation of
data has changed the estimate by only 0.63%!

According to the frequency definition, however, we are not permitted
to use probability theory to tackle this problem. This is because the
mass of Saturn is a constant and not a random variable; therefore, it
has no frequency distribution and so probability theory cannot be
used.
If the pdf [of Fig. 1.2] had to be interpreted in terms of the frequency
definition, we would have to imagine a large ensemble of universes in
which everything remains constant apart from the mass of Saturn.

As this scenario appears quite far-fetched, we might be inclined to
think of [Fig. 1.2] in terms of the distribution of the measurements
of the mass in many repetitions of the experiment. Although we
are at liberty to think about a problem in any way that facilitates
its solution, or our understanding of it, having to seek a frequency
interpretation for every data analysis problem seems rather perverse.
For example, what do we mean by the ‘measurement of the mass’
when the data consist of orbital periods? Besides, why should we
have to think about many repetitions of an experiment that never
happened? What we really want to do is to make the best inference of
the mass given the (few) data that we actually have; this is precisely
the Bayes and Laplace view of probability.
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Faced with the realization that the frequency definition of proba-
bility theory did not permit most real-life scientific problems to be
addressed, a new subject was invented — statistics! To estimate
the mass of Saturn, for example, one has to relate the mass to the
data through some function called the statistic; since the data are
subject to ‘random’ noise, the statistic becomes the random variable
to which the rules of probability the- ory can be applied. But now
the question arises: How should we choose the statistic? The fre-
quentist approach does not yield a natural way of doing this and
has, therefore, led to the development of several alternative schools
of orthodox or conventional statis- tics. The masters, such as Fisher,
Neyman and Pearson, provided a variety of different principles, which
has merely resulted in a plethora of tests and procedures without
any clear underlying rationale. This lack of unifying principles is,
perhaps, at the heart of the shortcomings of the cook-book approach
to statistics that students are often taught even today.

The Bayesian recipe
Assess hypotheses by calculating their probabilities p(Hi| . . .) conditional on

known and/or presumed information using the rules of probability theory.

Probability Theory Axioms:

Product (AND) rule : p(A,B|I) = p(A|I)p(B|A, I) = p(B|I)p(A|B, I)
Should read p(A,B|I) as the probability for propositions A AND B being
true given that I is true.

Sum (OR) rule: p(A+B|I) = p(A|I) + p(B|I)− p(A,B|I)
p(A+B|I) is the probability that proposition A OR B is true given that
I is true.

Normalization: p(A|I) + p(Ā|I) = 1
Ā denotes the proposition that A is false.

Bayes’ theorem
Bayes’ theorem follows directly from the product rule

p(A|B, I) = p(B|A, I)p(A|I)
p(B|I) .

The importance of this property to data analysis becomes apparent if we replace
A and B by hypothesis(H) and data(D):

p(H|D, I) = p(D|H, I)p(H|I)
p(D|I) . (1)
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The power of Bayes’ theorem lies in the fact that it relates the quantity of
interest, the probability that the hypothesis is true given the data, to the term
we have a better chance of being able to assign, the probability that we would
have observed the measured data if the hypothesis was true.

The various terms in Bayes’ theorem have formal names.

• The quantity on the far right, p(H|I), is called the prior probability; it
represents our state of knowledge (or ignorance) about the truth of the
hypothesis before we have analysed the current data.

• This is modified by the experimental measurements through p(D|H, I),
the likelihood function,

• The denominator p(D|I) is called the evidence. It does not depend on the
hypothesis and can be regarded as a normalization constant.

• Together, these yield the posterior probability, p(H|D, I), representing our
state of knowledge about the truth of the hypothesis in the light of the
data.

In a sense, Bayes’ theorem encapsulates the process of learning.

The friends of Bayes’ theorem

Normalization:
∑
i p(Hi| . . .) = 1.

Marginalization:
∑
i p(A,Hi|I) =

∑
i p(Hi|A, I)p(A|I) = p(A|I).

Marginalization (continuum limit):
∫
dxp(A,H(x)|I) = p(A|I).

In the above, Hi is an exclusive and exhaustive list of hypotheses. For exam-
ple,let’s imagine that there are five candidates in a presidential election; then
H1 could be the proposition that the first candidate will win, and so on. The
probability that A is true, for example that unemployment will be lower in a
year’s time (given all relevant information I, but irrespective of whoever becomes
president) is then given by

∑
i p(A,Hi|I).

In the continuum limit of propositions we must understand p(. . .) as a pdf
(probability density function).

Marginalization is a very powerful device in data analysis because it enables us
to deal with nuisance parameters; that is, quantities which necessarily enter the
analysis but are of no intrinsic interest. The unwanted background signal present
in many experimental measurements are examples of nuisance parameters.
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Inference With Parametric Models
Inductive inference with parametric models is a very important tool in the

natural sciences.

• Consider N different models Mi (i = 1, . . . , N), each with parameters
αi. Each of them implies a sampling distribution (conditional predictive
distribution for possible data)

p(D|αi,Mi)

• The αi dependence when we fix attention on the actual, observed data
(Dobs) is the likelihood function:

Li(αi) ≡ p(Dobs|αi,Mi)

• We may be uncertain about i (model uncertainty),

• or uncertain about αi (parameter uncertainty).

Parameter Estimation: Premise = choice of model (pick specific i)
⇒ What can we say about αi?

Model comparison: Premise = {Mi}
⇒ What can we say about i?

Model adequacy: Premise = M1
⇒ Is M1 adequate?

Hybrid Uncertainty: Models share some common params: α1 = {ϕ,ηi}
⇒ What can we say about ϕ? (Systematic error is an example)

Illustrative examples with python code

• Is this a fair coin? (analytical)

• Flux from a star (single parameter, MCMC)

• The lighthouse problem (two parameters, MCMC)

• Linear fit with outliers (nuisance parameters)

• ...
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Example: Is this a fair coin?
Let us begin with the analysis of data from a simple coin-tossing experiment.
Given that we had observed 6 heads in 8 flips, would you think it was a fair
coin? By fair, we mean that we would be prepared to lay an even 1 : 1 bet on
the outcome of a flip being a head or a tail. If we decide that the coin was fair,
the question which follows naturally is how sure are we that this was so; if it
was not fair, how unfair do we think it was? Furthermore, if we were to continue
collecting data for this particular coin, observing the outcomes of additional
flips, how would we update our belief on the fairness of the coin?

A sensible way of formulating this problem is to consider a large number of
hypotheses about the range in which the bias-weighting of the coin might lie. If
we denote the bias-weighting by H, then H = 0 and H = 1 can represent a coin
which produces a tail or a head on every flip, respectively. There is a continuum
of possibilities for the value of H between these limits, with H = 0.5 indicating a
fair coin. Our state of knowledge about the fairness, or the degree of unfairness,
of the coin is then completely summarized by specifying how much we believe
these various propositions to be true.

Let us perform a computer simulation of a coin-tossing experiment. This
provides the data that we will be analysing.

In the light of this data, our inference about the fairness of this coin is
summarized by the conditional pdf: p(H|D, I). This is, of course, shorthand for
the limiting case of a continuum of propositions for the value of H; that is to
say, the probability that H lies in an infinitesimally narrow range is given by
p(H|D, I)dH.

To estimate this posterior pdf, we need to use Bayes’ theorem (1). We will
ignore the denominator p(D|I) as it does not involve bias-weighting explicitly,
and it will therefore not affect the shape of the desired pdf. At the end we can
evaluate the missing constant subsequently from the normalization condition∫ 1

0
p(H|D, I)dH = 1. (2)

The prior pdf, p(H|I), represents what we know about the coin given only
the information I that we are dealing with a ‘strange coin’. We could keep a
very open mind about the nature of the coin; a simple probability assignment
which reflects this is a uniform, or flat, prior

p(H|I) =
{

1 0 ≤ H ≤ 1,
0 otherwise. (3)

We will get back later to the choice of prior and its effect on the analysis.
This prior state of knowledge, or ignorance, is modified by the data through

the likelihood function p(D|H, I). It is a measure of the chance that we would
have obtained the data that we actually observed, if the value of the bias-
weighting was given (as known). If, in the conditioning information I, we assume
that the flips of the coin were independent events, so that the outcome of one
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did not influence that of another, then the probability of obtaining the data
‘R heads in N tosses’ is given by the binomial distribution (we leave a formal
definition of this to a statistics textbook)

p(D|H, I) ∝ HR(1−H)N−R. (4)
It seems reasonable because H is the chance of obtaining a head on any flip, and
there were R of them, and 1−H is the corresponding probability for a tail, of
which there were N −R. We note that this binomial distribution also contains a
normalization factor, but we will ignore it since it does not depend explicitly on
H, the quantity of interest. It will be absorbed by the normalization condition
(2).

We perform the setup of this Bayesian framework on the computer.
The next step is to confront this setup with the simulated data. To get a feel

for the result, it is instructive to see how the posterior pdf evolves as we obtain
more and more data pertaining to the coin. The results of such an analyses is
shown in Fig. 1.

Figure 1: The evolution of the posterior pdf for the bias-weighting of a coin, as
the number of data available increases. The figure on the top left-hand corner of
each panel shows the number of data included in the analysis.

The panel in the top left-hand corner shows the posterior pdf for H given no
data, i.e., it is the same as the prior pdf of Eq. (3). It indicates that we have
no more reason to believe that the coin is fair than we have to think that it is
double-headed, double-tailed, or of any other intermediate bias-weighting.
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The first flip is obviously tails. At this point we have no evidence that the
coin has a side with heads, as indicated by the pdf going to zero as H → 1.
The second flip is obviously heads and we have now excluded both extreme
options H = 0 (double-tailed) and H = 1 (double-headed). We can note that the
posterior at this point has the simple form p(H|D, I) = H(1−H) for 0 ≤ H ≤ 1.

The remainder of Fig. 1 shows how the posterior pdf evolves as the number
of data analysed becomes larger and larger. We see that the position of the
maximum moves around, but that the amount by which it does so decreases
with the increasing number of observations. The width of the posterior pdf also
becomes narrower with more data, indicating that we are becoming increasingly
confident in our estimate of the bias-weighting. For the coin in this example,
the best estimate of H eventually converges to 0.6, which, of course, was the
value chosen to simulate the flips.

A few words on different priors
• uniform

• Gaussian

• Jeffrey’s prior

Repeat the coin flipping experiment with other priors.

Bayesian parameter estimation (single parameter)
We will now consider the very important task of model parameter estimation

using statistical inference. CF 1: maybe stress that model parameters are not
random variables, and the meaning of parameter estimation is therefore very
different between frequentist and bayesian approaches.

Throughout this section we will consider a specific example that involves a
model with a single parameter: “Measured flux from a star”.

Example: Measured flux from a star. Adapted from the blog Pythonic
Perambulations by Jake VanderPlas.

Imagine that we point our telescope to the sky, and observe the light coming
from a single star. For the time being, we’ll assume that the star’s true flux
is constant with time, i.e. that is it has a fixed value Ftrue (we’ll also ignore
effects like sky noise and other sources of systematic error). We’ll assume
that we perform a series of N measurements with our telescope, where the ith
measurement reports the observed photon flux Fi and error ei2. The question is,

2We’ll make the reasonable assumption that errors are Gaussian. In a Frequentist perspec-
tive, ei is the standard deviation of the results of a single measurement event in the limit
of repetitions of that event. In the Bayesian perspective, ei is the standard deviation of the
(Gaussian) probability distribution describing our knowledge of that particular measurement
given its observed value.
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given this set of measurements D = {Fi, ei}, what is our best estimate of the
true flux Ftrue?

Because the measurements are number counts, a Poisson distribution is a
good approximation to the measurement process:

Now let’s make a simple visualization of the “observed” data, see Fig. 2.

Figure 2: Single photon counts (flux measurements).

These measurements each have a different error ei which is estimated from
Poisson statistics using the standard square-root rule. In this toy example we
already know the true flux Ftrue, but the question is this: given our measurements
and errors, what is our best estimate of the true flux?

Let’s take a look at the frequentist and Bayesian approaches to solving this.

Simple Photon Counts: Frequentist Approach. We’ll start with the
classical frequentist maximum likelihood approach. Given a single observation
Di = (Fi, ei), we can compute the probability distribution of the measurement
given the true flux Ftrue given our assumption of Gaussian errors

p(Di|Ftrue, I) = 1√
2πe2

i

exp
(
−(Fi − Ftrue)2

2e2
i

)
. (5)

This should be read “the probability of Di given Ftrue equals ...”. You should
recognize this as a normal distribution with mean Ftrue and standard deviation
ei.
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We construct the likelihood function by computing the product of the proba-
bilities for each data point

L(D|Ftrue, I) =
N∏
i=1

p(Di|Ftrue, I), (6)

here D = {Di} represents the entire set of measurements. Because the value
of the likelihood can become very small, it is often more convenient to instead
compute the log-likelihood. Combining the previous two equations and computing
the log, we have

logL = −1
2

N∑
i=1

[
log(2πe2

i ) + (Fi − Ftrue)2

e2
i

]
. (7)

What we’d like to do is determine Ftrue such that the likelihood is maximized.
For this simple problem, the maximization can be computed analytically (i.e. by
setting d logL/dFtrue = 0). This results in the following observed estimate of
Ftrue

Fest =
N∑
i=1

wiFi; wi = 1/e2
i . (8)

Notice that in the special case of all errors ei being equal, this reduces to

Fest = 1
N

∑
i=1

Fi. (9)

That is, in agreement with intuition, Fest is simply the mean of the observed
data when errors are equal.

We can go further and ask what the error of our estimate is. In the frequentist
approach, this can be accomplished by fitting a Gaussian approximation to
the likelihood curve at maximum; in this simple case this can also be solved
analytically (the sum of Gaussians is also a Gaussian). It can be shown that the
standard deviation of this Gaussian approximation is

σest =
N∑
i=1

wi. (10)

These results are fairly simple calculations; let’s evaluate them for our toy
dataset:

F_true = 1000
F_est = 998 +/- 4 (based on 50 measurements)

We find that for 50 measurements of the flux, our estimate has an error of
about 0.4% and is consistent with the input value.
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Simple Photon Counts: Bayesian Approach. The Bayesian approach, as
you might expect, begins and ends with probabilities. Our hypothesis is that
the star has a constant flux Ftrue. It recognizes that what we fundamentally
want to compute is our knowledge of the parameters in question given the
data and other information (such as our knowledge of uncertainties for the
observed values), i.e. in this case, p(Ftrue|D, I). Note that this formulation of
the problem is fundamentally contrary to the frequentist philosophy, which says
that probabilities have no meaning for model parameters like Ftrue. Nevertheless,
within the Bayesian philosophy this is perfectly acceptable.

To compute this result, Bayesians next apply Bayes’ Theorem (1). If we set
the prior p(Ftrue|I) ∝ 1 (a flat prior), we find p(Ftrue|D, I) ∝ p(D|Ftrue, I) ≡
L(D|Ftrue, I) and the Bayesian probability is maximized at precisely the same
value as the frequentist result! So despite the philosophical differences, we
see that (for this simple problem at least) the Bayesian and frequentist point
estimates are equivalent.

A note about priors. The prior allows inclusion of other information into the
computation, which becomes very useful in cases where multiple measurement
strategies are being combined to constrain a single model. The necessity to
specify a prior, however, is one of the more controversial pieces of Bayesian
analysis. A frequentist will point out that the prior is problematic when no
true prior information is available. Though it might seem straightforward to
use a noninformative prior like the flat prior mentioned above, there are some
surprisingly subtleties involved. It turns out that in many situations, a truly
noninformative prior does not exist! Frequentists point out that the subjective
choice of a prior which necessarily biases your result has no place in statistical
data analysis. A Bayesian would counter that frequentism doesn’t solve this
problem, but simply skirts the question. Frequentism can often be viewed as
simply a special case of the Bayesian approach for some (implicit) choice of the
prior: a Bayesian would say that it’s better to make this implicit choice explicit,
even if the choice might include some subjectivity.

Simple Photon Counts: Bayesian approach in practice. Leaving these
philosophical debates aside for the time being, let’s address how Bayesian results
are generally computed in practice. For a one parameter problem like the one
considered here, it’s as simple as computing the posterior probability p(Ftrue|D, I)
as a function of Ftrue: this is the distribution reflecting our knowledge of the
parameter Ftrue. But as the dimension of the model grows, this direct approach
becomes increasingly intractable. For this reason, Bayesian calculations often
depend on sampling methods such as Markov Chain Monte Carlo (MCMC). For
this practical example, let us apply an MCMC approach using Dan Foreman-
Mackey’s emcee package. Keep in mind here that the goal is to generate a set of
points drawn from the posterior probability distribution, and to use those points
to determine the answer we seek. To perform this MCMC, we start by defining
Python functions for the prior p(Ftrue|I), the likelihood p(D|Ftrue, I), and the
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posterior p(Ftrue|D, I), noting that none of these need be properly normalized.
Our model here is one-dimensional, but to handle multi-dimensional models
we’ll define the model in terms of an array of parameters α, which in this case
is α = [Ftrue]

Now we set up the problem, including generating some random starting
guesses for the multiple chains of points.

If this all worked correctly, the array sample should contain a series of 50,000
points drawn from the posterior. Let’s plot them and check. See results in Fig. 3.

Figure 3: Bayesian posterior pdf (represented by a histogram of MCMC samples)
from flux measurements.

Best estimates and confidence intervals. The posterior distribution from
our Bayesian data analysis is the key quantity that encodes our inference about
the values of the model parameters, given the data and the relevant background
information. Often, however, we wish to summarize this result with just a few
numbers: the best estimate and a measure of its reliability.

There are a few different options for this. The choice of the most appropriate
one depends mainly on the shape of the posterior distribution:

Symmetric posterior pdfs: Since the probability (density) associated with
any particular value of the parameter is a measure of how much we believe that
it lies in the neighbourhood of that point, our best estimate is given by the
maximum of the posterior pdf. If we denote the quantity of interest by X, with
a posterior pdf P = p(X|D, I), then the best estimate of its value X0 is given
by the condition dP/dX|X=X0 = 0. Strictly speaking, we should also check the
sign of the second derivative to ensure that X0 represents a maximum.
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To obtain a measure of the reliability of this best estimate, we need to look
at the width or spread of the posterior pdf about X0. When considering the
behaviour of any function in the neighbourhood of a particular point, it is often
helpful to carry out a Taylor series expansion; this is simply a standard tool
for (locally) approximating a complicated function by a low-order polynomial.
The linear term is zero at the maximum and the quadratic term is often the
dominating one determining the width of the posterior pdf. Ignoring all the
higher-order terms we arrive at the Gaussian approximation

p(X|D, I) ≈ 1
σ
√

2π
exp

[
− (x− µ)2

2σ2

]
, (11)

where the mean µ = X0 and the variance σ =
(
− d2L

dX2

∣∣∣
X0

)−1/2
, where L is the

logarithm of the posterior P . Our inference about the quantity of interest is
conveyed very concisely, therefore, by the statement X = X0 ± σ, and

p(X0 − σ < X < X0 + σ|D, I) =
∫ X0+σ

X0−σ
p(X|D, I)dX ≈ 0.67.

Asymmetric posterior pdfs: While the maximum of the posterior (X0) can
still be regarded as giving the best estimate, the true value is now more likely to
be on one side of this rather than the other. Alternatively one can compute the
mean value, 〈X〉 =

∫
Xp(X|D, I)dX, although this tends to overemphasise very

long tails. The best option is probably a compromise that can be employed when
having access to a large sample from the posterior (as provided by an MCMC),
namely to give the median of this ensamble.

Furthermore, the concept of an error-bar does not seem appropriate in this
case, as it implicitly entails the idea of symmetry. A good way of expressing the
reliability with which a parameter can be inferred, for an asymmetric posterior
pdf, is rather through a confidence interval. Since the area under the posterior
pdf between X1 and X2 is proportional to how much we believe that X lies
in that range, the shortest interval that encloses 67% of the area represents a
sensible measure of the uncertainty of the estimate. Obviously we can choose
to provide some other degree-of-belief that we think is relevant for the case at
hand. Assuming that the posterior pdf has been normalized, to have unit area,
we need to find X1 and X2 such that:

p(X1 < X < X2|D, I) =
∫ X2

X1

p(X|D, I)dX ≈ 0.67,

where the difference X2 −X1 is as small as possible. The region X1 < X < X2
is then called the shortest 67% confidence interval.

Multimodal posterior pdfs: We can sometimes obtain posteriors which are
multimodal; i.e. contains several disconnected regions with large probabilities.
There is no difficulty when one of the maxima is very much larger than the others:
we can simply ignore the subsidiary solutions, to a good approximation, and
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concentrate on the global maximum. The problem arises when there are several
maxima of comparable magnitude. What do we now mean by a best estimate,
and how should we quantify its reliability? The idea of a best estimate and an
error-bar, or even a confidence interval, is merely an attempt to summarize the
posterior with just two or three numbers; sometimes this just can’t be done,
and so these concepts are not valid. For the bimodal case we might be able
to characterize the posterior in terms of a few numbers: two best estimates
and their associated error-bars, or disjoint confidence intervals. For a general
multimodal pdf, the most honest thing we can do is just display the posterior
itself.

Simple Photon Counts: Best estimates and confidence intervals. To
compute these numbers for our example, you would run:

F_true = 1000
Based on 50 measurements the posterior point estimates are:
...F_est = 998 +/- 4
or using credible intervals:
...F_est = 998 (posterior median)
...F_est in [993, 1002] (67% credible interval)
...F_est in [989, 1006] (95% credible interval)

In this particular example, the posterior pdf is actually a Gaussian (since it
is constructed as a product of Gaussians), and the mean and variance from the
quadratic approximation will agree exactly with the frequentist approach.

From this final result you might come away with the impression that the
Bayesian method is unnecessarily complicated, and in this case it certainly is.
Using an MCMC sampler to characterize a one-dimensional normal distribution
is a bit like using the Death Star to destroy a beach ball, but we did this here
because it demonstrates an approach that can scale to complicated posteriors
in many, many dimensions, and can provide nice results in more complicated
situations where an analytic likelihood approach is not possible.

Furthermore, as data and models grow in complexity, the two approaches
can diverge greatly.

Bayesian parameter estimation (multiple parameters, co-
variance)

• multidimensional posterior pdf:s

• nuisance parameters (e.g. background subtraction?)

• corner plots, covariance, correlations

• best example?
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Bayesian model selection

• Bayesian evidence

• Occam’s razor

• Best example? How many spectral lines are there?
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