
Data Analysis and Machine Learning:
Trees, forests and all that

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 19, 2019

Decision trees, overarching aims
Decision trees are supervised learning algorithms used for both, classification
and regression tasks.

The main idea of decision trees is to find those descriptive features which
contain the most information regarding the target feature and then split the
dataset along the values of these features such that the target feature values for
the resulting sub datasets are as pure as possible.

The descriptive feature which leaves the target feature most purely is said
to be the most informative one. This process of finding the most informative
feature is done until we accomplish a stopping criteria where we then finally end
up in so called leaf nodes.

The leaf nodes contain the predictions we will make for new query instances
presented to our trained model. This is possible since the model has kind of
learned the underlying structure of the training data and hence can, given some
assumptions, make predictions about the target feature value (class) of unseen
query instances.

A decision tree mainly contains of a root node, interior nodes, and leaf
nodes which are then connected by branches.

How do we set it up?
In simplified terms, the process of training a decision tree and predicting the
target features of query instances is as follows:

1. Present a dataset containing of a number of training instances characterized
by a number of descriptive features and a target feature

c© 1999-2019, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license



2. Train the decision tree model by continuously splitting the target feature
along the values of the descriptive features using a measure of information
gain during the training process

3. Grow the tree until we accomplish a stopping criteria create leaf nodes
which represent the predictions we want to make for new query instances

4. Show query instances to the tree and run down the tree until we arrive at
leaf nodes

Then we are essentially done!

Decision trees and Regression, our Nuclear data model
Building a tree, regression
There are mainly two steps

1. We split the predictor space (the set of possible values x1, x2, . . . , xp) into
J

distinct and non-non-overlapping regions, R1, R2, . . . , RJ .

1. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the training
observations in Rj .

How do we construct the regions R1, . . . , RJ? In theory, the regions could
have any shape. However, we choose to divide the predictor space into high-
dimensional rectangles, or boxes, for simplicity and for ease of interpretation
of the resulting predic- tive model. The goal is to find boxes R1, . . . , RJ that
minimize the MSE, given by

J∑
j=1

∑
i∈Rj

(yi − yRj
)2,

where yRj
is the mean response for the training observations within the jth box.

A top-down approach, recursive binary splitting
Unfortunately, it is computationally infeasible to consider every possible partition
of the feature space into J boxes. The common strategy is to take a top-down
approach

The approach is top-down because it begins at the top of the tree (all
observations belong to a single region) and then successively splits the predictor
space; each split is indicated via two new branches further down on the tree. It
is greedy because at each step of the tree-building process, the best split is made
at that particular step, rather than looking ahead and picking a split that will
lead to a better tree in some future step.

2



Making a tree
In order to implement the recursive binary splitting we start by selecting the
predictor xj and a cutpoint s that splits the predictor space into two regions R1
and R2

{X|xj < s} ,

and
{X|xj ≥ s} ,

so that we obtain the lowest MSE, that is∑
i:xi∈Rj

(yi − yR1)2 +
∑

i:xi∈R2

(yi − yR2)2,

which we want to minimize by considering all predictors x1, x2, . . . , xp. We
consider also all possible values of s for each predictor. These values could be
determined by randomly assigned numbers or by starting at the midpoint and
then proceed till we find an optimal value.

For any j and s, we define the pair of half-planes where yR1 is the mean
response for the training observations in R1(j, s), and yR2 is the mean response
for the training observations in R2(j, s).

Finding the values of j and s that minimize the above equation can be done
quite quickly, especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best cutpoint
in order to split the data further so as to minimize the MSE within each of the
resulting regions. However, this time, instead of splitting the entire predictor
space, we split one of the two previously identified regions. We now have
three regions. Again, we look to split one of these three regions further, so
as to minimize the MSE. The process continues until a stopping criterion is
reached; for instance, we may continue until no region contains more than five
observations.

Pruning the tree
The above procedure is rather straightforward, but leads often to overfitting and
unnecessarily large and complicated trees. The basic idea is to grow a large tree
T0 and then prune it back in order to obtain a subtree. A smaller tree with fewer
splits (fewer regions) can lead to smaller variance and better interpretation at
the cost of a little more bias.

The so-called Cost complexity pruning algorithm gives us a way to do just
this. Rather than considering every possible subtree, we consider a sequence of
trees indexed by a nonnegative tuning parameter α.

3



Cost complexity pruning
For each value of α there corresponds a subtree T ∈ T0 such that

T∑
m=1

∑
i:xi∈Rm

(yi − yRm
)2 + αT ,

is as small as possible. Here T is the number of terminal nodes of the tree T
, Rm is the rectangle (i.e. the subset of predictor space) corresponding to the
m-th terminal node.

The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T will
simply equal T0, because then the above equation just measures the training
error. However, as α increases, there is a price to pay for having a tree with many
terminal nodes. The above equation will tend to be minimized for a smaller
subtree.

It turns out that as we increase α from zero branches get pruned from the
tree in a nested and predictable fashion, so obtaining the whole sequence of
subtrees as a function of α is easy. We can select a value of α using a validation
set or using cross-validation. We then return to the full data set and obtain the
subtree corresponding to α.

A schematic procedure
Building a Regression Tree.

1. Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum
number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use for example K-fold cross-validation to choose α. Divide the training
observations into K folds. For each k = 1, 2, . . . ,K we:

• repeat steps 1 and 2 on all but the k-th fold of the training data.
• Then we valuate the mean squared prediction error on the data in
the left-out k-th fold, as a function of α.

• Finally we average the results for each value of α, and pick α to
minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

4



A classification tree
A classification tree is very similar to a regression tree, except that it is used to
predict a qualitative response rather than a quantitative one. Recall that for a
regression tree, the predicted response for an observation is given by the mean
response of the training observations that belong to the same terminal node.
In contrast, for a classification tree, we predict that each observation belongs
to the most commonly occurring class of training observations in the region to
which it belongs. In interpreting the results of a classification tree, we are often
interested not only in the class prediction corresponding to a particular terminal
node region, but also in the class proportions among the training observations
that fall into that region.

Growing a classification tree
The task of growing a classification tree is quite similar to the task of growing a
regression tree. Just as in the regression setting, we use recursive binary splitting
to grow a classification tree. However, in the classification setting, the MSE
cannot be used as a criterion for making the binary splits. A natural alternative
to MSE is the classification error rate. Since we plan to assign an observation
in a given region to the most commonly occurring error rate class of training
observations in that region, the classification error rate is simply the fraction of
the training observations in that region that do not belong to the most common
class.

When building a classification tree, either the Gini index or the entropy
are typically used to evaluate the quality of a particular split, since these two
approaches are more sensitive to node purity than is the classification error rate.

Classification tree, how to split nodes
If our targets are the outcome of a classification process that takes for example
k = 1, 2, . . . ,K values, the only thing we need to think of is to set up the splitting
criteria for each node.

We define a PDF pmk that represents the number of observations of a class
k in a region Rm with Nm observations. We represent this likelihood function
in terms of the proportion I(yi = k) of observations of this class in the region
Rm as

pmk = 1
Nm

∑
xi∈Rm

I(yi = k).

We let pmk represent the majority class of observations in region m. The
three most common ways of splitting a node are given by

• Misclassification error

pmk = 1
Nm

∑
xi∈Rm

I(yi 6= k) = 1− pmk.

5



• Gini index g

g =
K∑

k=1
pmk(1− pmk).

• Information entropy or just entropy s

s = −
K∑

k=1
pmk log pmk.

Back to moons again
Playing around with regions
Regression trees
Final regressor code
Pros and cons of trees, pros
• White box, easy to interpret model. Some people believe that decision
trees more closely mirror human decision-making than do the regression
and classification approaches discussed earlier (think of support vector
machines)

• Trees are very easy to explain to people. In fact, they are even easier to
explain than linear regression!

• No feature normalization needed

• Tree models can handle both continuous and categorical data (Classification
and Regression Trees)

• Can model nonlinear relationships

• Can model interactions between the different descriptive features

• Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small)

Disadvantages
• Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches

• If continuous features are used the tree may become quite large and hence
less interpretable

6



• Decision trees are prone to overfit the training data and hence do not well
generalize the data if no stopping criteria or improvements like pruning,
boosting or bagging are implemented

• Small changes in the data may lead to a completely different tree. This
issue can be addressed by using ensemble methods like bagging, boosting
or random forests

• Unbalanced datasets where some target feature values occur much more fre-
quently than others may lead to biased trees since the frequently occurring
feature values are preferred over the less frequently occurring ones.

• If the number of features is relatively large (high dimensional) and the
number of instances is relatively low, the tree might overfit the data

• Features with many levels may be preferred over features with less levels
since for them it is more easy to split the dataset such that the sub datasets
only contain pure target feature values. This issue can be addressed by
preferring for instance the information gain ratio as splitting criteria over
information gain

However, by aggregating many decision trees, using methods like bagging, random
forests, and boosting, the predictive performance of trees can be substantially
improved.

Bagging
The plain decision trees suffer from high variance. This means that if we split
the training data into two parts at random, and fit a decision tree to both halves,
the results that we get could be quite different. In contrast, a procedure with
low variance will yield similar results if applied repeatedly to distinct data sets;
linear regression tends to have low variance, if the ratio of n to p is moderately
large.

Bootstrap aggregation, or just bagging, is a general-purpose procedure
for reducing the variance of a statistical learning method.

Bagging typically results in improved accuracy over prediction using a single
tree. Unfortunately, however, it can be difficult to interpret the resulting model.
Recall that one of the advantages of decision trees is the attractive and easily
interpreted diagram that results.

However, when we bag a large number of trees, it is no longer possible to
represent the resulting statistical learning procedure using a single tree, and it
is no longer clear which variables are most important to the procedure. Thus,
bagging improves prediction accuracy at the expense of interpretability. Although
the collection of bagged trees is much more difficult to interpret than a single tree,
one can obtain an overall summary of the importance of each predictor using the
MSE (for bagging regression trees) or the Gini index (for bagging classification
trees). In the case of bagging regression trees, we can record the total amount

7



that the MSE is decreased due to splits over a given predictor, averaged over all
B possible trees. A large value indicates an important predictor. Similarly, in
the context of bagging classification trees, we can add up the total amount that
the Gini index is decreased by splits over a given predictor, averaged over all B
trees.

Random forests
Random forests provide an improvement over bagged trees by way of a small
tweak that decorrelates the trees.

As in bagging, we build a number of decision trees on bootstrapped training
samples. But when building these decision trees, each time a split in a tree
is considered, a random sample of m predictors is chosen as split candidates
from the full set of p predictors. The split is allowed to use only one of those m
predictors.

A fresh sample of m predictors is taken at each split, and typically we choose

m ≈ √p.

In building a random forest, at each split in the tree, the algorithm is not even
allowed to consider a majority of the available predictors.

The reason for this is rather clever. Suppose that there is one very strong
predictor in the data set, along with a number of other moderately strong
predictors. Then in the collection of bagged variable importance random forest
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other. Hence
the predictions from the bagged trees will be highly correlated. Unfortunately,
averaging many highly correlated quantities does not lead to as large of a
reduction in variance as averaging many uncorrelated quanti- ties. In particular,
this means that bagging will not lead to a substantial reduction in variance over
a single tree in this setting.

A simple scikit-learn example
Please, not the moons again!
Bagging examples
Then random forests

8


