
Data Analysis and Machine Learning:
Logistic Regression

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Mar 11, 2019

Logistic Regression
In linear regression our main interest was centered on learning the coefficients of
a functional fit (say a polynomial) in order to be able to predict the response of a
continuous variable on some unseen data. The fit to the continuous variable yi is
based on some independent variables x̂i. Linear regression resulted in analytical
expressions (in terms of matrices to invert) for several quantities, ranging from
the variance and thereby the confidence intervals of the parameters β̂ to the
mean squared error. If we can invert the product of the design matrices, linear
regression gives then a simple recipe for fitting our data.

Classification problems, however, are concerned with outcomes taking the
form of discrete variables (i.e. categories). We may for example, on the basis
of DNA sequencing for a number of patients, like to find out which mutations
are important for a certain disease; or based on scans of various patients’ brains,
figure out if there is a tumor or not; or given a specific physical system, we’d like
to identify its state, say whether it is an ordered or disordered system (typical
situation in solid state physics); or classify the status of a patient, whether
she/he has a stroke or not and many other similar situations.

The most common situation we encounter when we apply logistic regression
is that of two possible outcomes, normally denoted as a binary outcome, true or
false, positive or negative, success or failure etc.

Optimization and Deep learning
Logistic regression will also serve as our stepping stone towards neural network
algorithms and supervised deep learning. For logistic learning, the minimization
of the cost function leads to a non-linear equation in the parameters β̂. The
optmization of the problem calls therefore for minimization algorithms. This
forms the bottle neck of all machine learning algorithms, namely how to find

c© 1999-2019, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

reliable minima of a multi-variable function. This leads us to the family of
gradient descent methods. The latter are the working horses of basically all
modern machine learning algorithms.

We note also that many of the topics discussed here regression are also
commonly used in modern supervised Deep Learning models, as we will see later.

Basics
We consider the case where the dependent variables, also called the responses or
the outcomes, yi are discrete and only take values from k = 0, . . . ,K − 1 (i.e. K
classes).

The goal is to predict the output classes from the design matrix X̂ ∈ Rn×p

made of n samples, each of which carries p features or predictors. The primary
goal is to identify the classes to which new unseen samples belong.

Let us specialize to the case of two classes only, with outputs yi = 0 and
yi = 1. Our outcomes could represent the status of a credit card user who could
default or not on her/his credit card debt. That is

yi =
[
0 no
1 yes

]
.

Linear classifier
Before moving to the logistic model, let us try to use our linear regression model
to classify these two outcomes. We could for example fit a linear model to the
default case if yi > 0.5 and the no default case yi ≤ 0.5.

We would then have our weighted linear combination, namely

ŷ = X̂T β̂ + ε̂, (1)

where ŷ is a vector representing the possible outcomes, X̂ is our n× p design
matrix and β̂ represents our estimators/predictors.

Some selected properties
The main problem with our function is that it takes values on the entire real axis.
In the case of logistic regression, however, the labels yi are discrete variables.

One simple way to get a discrete output is to have sign functions that map
the output of a linear regressor to values {0, 1}, f(si) = sign(si) = 1 if si ≥ 0
and 0 if otherwise. We will encounter this model in our first demonstration of
neural networks. Historically it is called the “perceptron" model in the machine
learning literature. This model is extremely simple. However, in many cases it
is more favorable to use a “soft" classifier that outputs the probability of a given
category. This leads us to the logistic function.

The code for plotting the perceptron can be seen here. This si nothing but
the standard Heaviside step function.

2

https://en.wikipedia.org/wiki/Heaviside_step_function

The logistic function
The perceptron is an example of a “hard classification” model. We will encounter
this model when we discuss neural networks as well. Each datapoint is deter-
ministically assigned to a category (i.e yi = 0 or yi = 1). In many cases, it
is favorable to have a “soft” classifier that outputs the probability of a given
category rather than a single value. For example, given xi, the classifier outputs
the probability of being in a category k. Logistic regression is the most common
example of a so-called soft classifier. In logistic regression, the probability that
a data point xi belongs to a category yi = {0, 1} is given by the so-called logit
function (or Sigmoid) which is meant to represent the likelihood for a given
event,

p(t) = 1
1 + exp−t = exp t

1 + expt .

Note that 1− p(t) = p(−t). The following code plots the logistic function.

Two parameters
We assume now that we have two classes with yi either 0 or 1. Furthermore we
assume also that we have only two parameters β in our fitting of the Sigmoid
function, that is we define probabilities

p(yi = 1|xi, β̂) = exp (β0 + β1xi)
1 + exp (β0 + β1xi)

,

p(yi = 0|xi, β̂) = 1− p(yi = 1|xi, β̂),

where β̂ are the weights we wish to extract from data, in our case β0 and β1.
Note that we used

p(yi = 0|xi, β̂) = 1− p(yi = 1|xi, β̂).

Maximum likelihood
In order to define the total likelihood for all possible outcomes from a dataset
D = {(yi, xi)}, with the binary labels yi ∈ {0, 1} and where the data points
are drawn independently, we use the so-called Maximum Likelihood Estimation
(MLE) principle. We aim thus at maximizing the probability of seeing the
observed data. We can then approximate the likelihood in terms of the product
of the individual probabilities of a specific outcome yi, that is

P (D|β̂) =
n∏

i=1

[
p(yi = 1|xi, β̂)

]yi
[
1− p(yi = 1|xi, β̂))

]1−yi

3

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

from which we obtain the log-likelihood and our cost/loss function

C(β̂) =
n∑

i=1

(
yi log p(yi = 1|xi, β̂) + (1− yi) log

[
1− p(yi = 1|xi, β̂))

])
.

The cost function rewritten
Reordering the logarithms, we can rewrite the cost/loss function as

C(β̂) =
n∑

i=1
(yi(β0 + β1xi)− log (1 + exp (β0 + β1xi))) .

The maximum likelihood estimator is defined as the set of parameters that
maximize the log-likelihood where we maximize with respect to β. Since the
cost (error) function is just the negative log-likelihood, for logistic regression we
have that

C(β̂) = −
n∑

i=1
(yi(β0 + β1xi)− log (1 + exp (β0 + β1xi))) .

This equation is known in statistics as the cross entropy. Finally, we note that
just as in linear regression, in practice we often supplement the cross-entropy
with additional regularization terms, usually L1 and L2 regularization as we did
for Ridge and Lasso regression.

Minimizing the cross entropy
The cross entropy is a convex function of the weights β̂ and, therefore, any local
minimizer is a global minimizer.

Minimizing this cost function with respect to the two parameters β0 and β1
we obtain

∂C(β̂)
∂β0

= −
n∑

i=1

(
yi −

exp (β0 + β1xi)
1 + exp (β0 + β1xi)

)
,

and
∂C(β̂)
∂β1

= −
n∑

i=1

(
yixi − xi

exp (β0 + β1xi)
1 + exp (β0 + β1xi)

)
.

A more compact expression
Let us now define a vector ŷ with n elements yi, an n × p matrix X̂ which
contains the xi values and a vector p̂ of fitted probabilities p(yi|xi, β̂). We can
rewrite in a more compact form the first derivative of cost function as

∂C(β̂)
∂β̂

= −X̂T (ŷ − p̂) .

4

If we in addition define a diagonal matrix Ŵ with elements p(yi|xi, β̂)(1−
p(yi|xi, β̂), we can obtain a compact expression of the second derivative as

∂2C(β̂)
∂β̂∂β̂T

= X̂T Ŵ X̂.

Extending to more predictors
Within a binary classification problem, we can easily expand our model to include
multiple predictors. Our ratio between likelihoods is then with p predictors

log p(β̂x̂)
1− p(β̂x̂)

= β0 + β1x1 + β2x2 + · · ·+ βpxp.

Here we defined x̂ = [1, x1, x2, . . . , xp] and β̂ = [β0, β1, . . . , βp] leading to

p(β̂x̂) = exp (β0 + β1x1 + β2x2 + · · ·+ βpxp)
1 + exp (β0 + β1x1 + β2x2 + · · ·+ βpxp) .

Including more classes
Till now we have mainly focused on two classes, the so-called binary system.
Suppose we wish to extend to K classes. Let us for the sake of simplicity assume
we have only two predictors. We have then following model

log p(C = 1|x)
p(K|x) = β10 + β11x1,

log p(C = 2|x)
p(K|x) = β20 + β21x1,

and so on till the class C = K − 1 class

log p(C = K − 1|x)
p(K|x) = β(K−1)0 + β(K−1)1x1,

and the model is specified in term of K − 1 so-called log-odds or logit transfor-
mations.

The Softmax function
In our discussion of neural networks we will encounter the above again in terms
of the so-called Softmax function.

The softmax function is used in various multiclass classification methods, such
as multinomial logistic regression (also known as softmax regression), multiclass
linear discriminant analysis, naive Bayes classifiers, and artificial neural networks.
Specifically, in multinomial logistic regression and linear discriminant analysis,
the input to the function is the result of K distinct linear functions, and the

5

predicted probability for the k-th class given a sample vector x̂ and a weighting
vector β̂ is (with two predictors):

p(C = k|x) = exp (βk0 + βk1x1)
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

.

It is easy to extend to more predictors. The final class is

p(C = K|x) = 1
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

,

and they sum to one. Our earlier discussions were all specialized to the case
with two classes only. It is easy to see from the above that what we derived
earlier is compatible with these equations.

To find the optimal parameters we would typically use a gradient descent
method. Newton’s method and gradient descent methods are discussed in the
material on optimization methods.

A scikit-learn example
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()
list(iris.keys())
[’data’, ’target_names’, ’feature_names’, ’target’, ’DESCR’]
X = iris["data"][:, 3:] # petal width
y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)

X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
y_proba = log_reg.predict_proba(X_new)
plt.plot(X_new, y_proba[:, 1], "g-", label="Iris-Virginica")
plt.plot(X_new, y_proba[:, 0], "b--", label="Not Iris-Virginica")
plt.show()

A simple classification problem
import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt

def generate_data():
np.random.seed(0)
X, y = datasets.make_moons(200, noise=0.20)
return X, y

def visualize(X, y, clf):
plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()

6

https://compphysics.github.io/MachineLearning/doc/pub/Splines/html/Splines-bs.html

plot_decision_boundary(lambda x: clf.predict(x), X, y)
plt.title("Logistic Regression")

def plot_decision_boundary(pred_func, X, y):
Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Predict the function value for the whole gid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()

def classify(X, y):
clf = linear_model.LogisticRegressionCV()
clf.fit(X, y)
return clf

def main():
X, y = generate_data()
visualize(X, y)
clf = classify(X, y)
visualize(X, y, clf)

if __name__ == "__main__":
main()

The two-dimensional Ising model, Predicting phase transi-
tion of the two-dimensional Ising model
The Hamiltonian of the two-dimensional Ising model without an external field
for a constant coupling constant J is given by

H = −J
∑
〈ij〉

SiSj , (2)

where Si ∈ {−1, 1} and 〈ij〉 signifies that we only iterate over the nearest
neighbors in the lattice. We will be looking at a system of L = 40 spins in each
dimension, i.e., L2 = 1600 spins in total. Opposed to the one-dimensional Ising
model we will get a phase transition from an ordered phase to a disordered
phase at the critical temperature

Tc

J
= 2

log
(
1 +
√

2
) ≈ 2.26, (3)

as shown by Lars Onsager.

7

Here we use logistic regression to predict when a phase transition occurs.
The data we will look at is a set of spin configurations, i.e., individual lattices
with spins, labeled ordered 1 or disordered 0. Our job is to build a model
which will take in a spin configuration and predict whether or not the spin
configuration constitutes an ordered or a disordered phase. To achieve this
we will represent the lattices as flattened arrays with 1600 elements instead
of a matrix of 40 × 40 elements. As an extra test of the performance of the
algorithms we will divide the dataset into three pieces. We will do a conventional
train-test-split on a combination of totally ordered and totally disordered phases.
The remaining "critical-like" states will be used as test data which we hope the
model will be able to make good extrapolated predictions on.

import pickle
import os
import glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.model_selection as skms
import sklearn.linear_model as skl
import sklearn.metrics as skm
import tqdm
import copy
import time
from IPython.display import display

%matplotlib inline

sns.set(color_codes=True)

Reading in the data
Using the data fromMehta et al. (specifically the two datasets named Ising2DFM_reSample_L40_T=All.pkl
and Ising2DFM_reSample_L40_T=All_labels.pkl) we have to unpack the data
into numpy arrays.

filenames = glob.glob(os.path.join("..", "dat", "*"))
label_filename = list(filter(lambda x: "label" in x, filenames))[0]
dat_filename = list(filter(lambda x: "label" not in x, filenames))[0]

Read in the labels
with open(label_filename, "rb") as f:

labels = pickle.load(f)

Read in the corresponding configurations
with open(dat_filename, "rb") as f:

data = np.unpackbits(pickle.load(f)).reshape(-1, 1600).astype("int")

Set spin-down to -1
data[data == 0] = -1

This dataset consists of 10000 samples, i.e., 10000 spin configurations with
40× 40 spins each, for 16 temperatures between 0.25 to 4.0. Next we create a

8

https://physics.bu.edu/~pankajm/ML-Review-Datasets/isingMC/

train/test-split and keep the data in the critical phase as a separate dataset for
extrapolation-testing.

Set up slices of the dataset
ordered = slice(0, 70000)
critical = slice(70000, 100000)
disordered = slice(100000, 160000)

X_train, X_test, y_train, y_test = skms.train_test_split(
np.concatenate((data[ordered], data[disordered])),
np.concatenate((labels[ordered], labels[disordered])),
test_size=0.95

)

Logistic regression
Logistic regression is a linear model for classification. Recalling the cost function
for ordinary least squares with both L2 (ridge) and L1 (LASSO) penalties we
will see that the logistic cost function is very similar. In OLS we wish to predict
a continuous variable ŷ using

ŷ = Xω, (4)

where X ∈ Rn×p is the input data and ωp×d are the weights of the regression.
In a classification setting (binary classification in our situation) we are interested
in a positive or negative answer. We can thus define either answer to be above
or below some threshold. But, in order to limit the size of the answer and also
to get a probability interpretation on how sure we are for either answer we can
compute the sigmoid function of OLS. That is,

f(Xω) = 1
1 + exp(−Xω) . (5)

We are thus interested in minizming the following cost function

C(X,ω) =
n∑

i=1

{
−yi log

(
f(xT

i ω)
)
− (1− yi) log

[
1− f(xT

i ω)
]}
, (6)

where we will restrict ourselves to a value for f(z) as the sigmoid described
above. We can also tack on a L2 (Ridge) or L1 (LASSO) penalization to this
cost function in the same manner we did for linear regression.

Exploring the logistic regression
The penalization factor λ is inverted in the case of the logistic regression model
we use. We will explore several values of λ using both L1 and L2 penalization.
We do this using a grid search over different parameters and run a 3-fold cross
validation for each configuration. In other words, we fit a model 3 times for each
configuration of the hyper parameters.

9

lambdas = np.logspace(-7, -1, 7)

param_grid = {
"C": list(1.0/lambdas),
"penalty": ["l1", "l2"]

}
clf = skms.GridSearchCV(

skl.LogisticRegression(),
param_grid=param_grid,
n_jobs=-1,
return_train_score=True

)
t0 = time.time()
clf.fit(X_train, y_train)
t1 = time.time()

print (
"Time spent fitting GridSearchCV(LogisticRegression): {0:.3f} sec".format(

t1 - t0
)

)

We can see that logistic regression is quite slow and using the grid search
and cross validation results in quite a heavy computation. Below we show the
results of the different configurations.

logreg_df = pd.DataFrame(clf.cv_results_)

display(logreg_df)

Accuracy of a classification model
To determine how well a classification model is performing we count the number
of correctly labeled classes and divide by the number of classes in total. The
accuracy is thus given by

a(y, ŷ) = 1
n

n∑
i=1

I(yi = ŷi), (7)

where I(yi = ŷi) is the indicator function given by

I(x = y) = 1 x = y,
0 x 6= y.

(8)

This is the accuracy provided by Scikit-learn when using sklearn.metrics.accuracyscore.
Below we compute the accuracy of the best fit model on the training data

(which should give a good accuracy), the test data (which has not been shown
to the model) and the critical data (completely new data that needs to be
extrapolated).

train_accuracy = skm.accuracy_score(y_train, clf.predict(X_train))
test_accuracy = skm.accuracy_score(y_test, clf.predict(X_test))

10

critical_accuracy = skm.accuracy_score(labels[critical], clf.predict(data[critical]))

print ("Accuracy on train data: {0}".format(train_accuracy))
print ("Accuracy on test data: {0}".format(test_accuracy))
print ("Accuracy on critical data: {0}".format(critical_accuracy))

We can see that we get quite good accuracy on the training data, but gradually
worsening accuracy on the test and critical data.

Analyzing the results
Below we show a different metric for determining the quality of our model,
namely the reciever operating characteristic (ROC). The ROC curve tells
us how well the model correctly classifies the different labels. We plot the true
positive rate (the rate of predicted positive classes that are positive) versus
the false positive rate (the rate of predicted positive classes that are negative).
The ROC curve is built by computing the true positive rate and the false positive
rate for varying thresholds, i.e, which probability we should acredit a certain
class.

By computing the area under the curve (AUC) of the ROC curve we get
an estimate of how well our model is performing. Pure guessing will get an AUC
of 0.5. A perfect score will get an AUC of 1.0.

fig = plt.figure(figsize=(20, 14))

for (_X, _y), label in zip(
[

(X_train, y_train),
(X_test, y_test),
(data[critical], labels[critical])

],
["Train", "Test", "Critical"]

):
proba = clf.predict_proba(_X)
fpr, tpr, _ = skm.roc_curve(_y, proba[:, 1])
roc_auc = skm.auc(fpr, tpr)

print ("LogisticRegression AUC ({0}): {1}".format(label, roc_auc))

plt.plot(fpr, tpr, label="{0} (AUC = {1})".format(label, roc_auc), linewidth=4.0)

plt.plot([0, 1], [0, 1], "--", label="Guessing (AUC = 0.5)", linewidth=4.0)

plt.title(r"The ROC curve for LogisticRegression", fontsize=18)
plt.xlabel(r"False positive rate", fontsize=18)
plt.ylabel(r"True positive rate", fontsize=18)
plt.axis([-0.01, 1.01, -0.01, 1.01])
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.legend(loc="best", fontsize=18)
plt.show()

We can see that this plot of the ROC looks very strange. This tells us that
logistic regression is quite inept at predicting the Ising model transition and is
therefore highly non-linear. The ROC curve for the training data looks quite

11

good, but as the testing data is so far off we see that we are dealing with an
overfit model.

12

