Data Analysis and Machine Learning:
Neural networks, from the simple
perceptron to deep learning and

convolutional networks

Morten Hjorth-Jensen'?
'Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Mar 11, 2019

Neural networks

Artificial neural networks are computational systems that can learn to perform
tasks by considering examples, generally without being programmed with any
task-specific rules. It is supposed to mimic a biological system, wherein neurons
interact by sending signals in the form of mathematical functions between layers.
All layers can contain an arbitrary number of neurons, and each connection is
represented by a weight variable.

Artificial neurons

The field of artificial neural networks has a long history of development, and
is closely connected with the advancement of computer science and computers
in general. A model of artificial neurons was first developed by McCulloch and
Pitts in 1943 to study signal processing in the brain and has later been refined
by others. The general idea is to mimic neural networks in the human brain,
which is composed of billions of neurons that communicate with each other by
sending electrical signals. Each neuron accumulates its incoming signals, which
must exceed an activation threshold to yield an output. If the threshold is not
overcome, the neuron remains inactive, i.e. has zero output.

This behaviour has inspired a simple mathematical model for an artificial
neuron.

y=1f (Z wﬂz) = f(u) (1)
i=1

© 1999-2019, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0

license

Here, the output y of the neuron is the value of its activation function, which
have as input a weighted sum of signals z;, ..., z, received by n other neurons.
Conceptually, it is helpful to divide neural networks into four categories:

1. general purpose neural networks for supervised learning,

2. neural networks designed specifically for image processing, the most promi-
nent example of this class being Convolutional Neural Networks (CNNs),

3. neural networks for sequential data such as Recurrent Neural Networks
(RNNs), and

4. neural networks for unsupervised learning such as Deep Boltzmann Ma-
chines.

In natural science, DNNs and CNNs have already found numerous applications.
In statistical physics, they have been applied to detect phase transitions in 2D
Ising and Potts models, lattice gauge theories, and different phases of polymers,
or solving the Navier-Stokes equation in weather forecasting. Deep learning has
also found interesting applications in quantum physics. Various quantum phase
transitions can be detected and studied using DNNs and CNNs, topological
phases, and even non-equilibrium many-body localization. Representing quantum
states as DNNs quantum state tomography are among some of the impressive
achievements to reveal the potential of DNNs to facilitate the study of quantum
systems.

In quantum information theory, it has been shown that one can perform gate
decompositions with the help of neural.

The applications are not limited to the natural sciences. There is a plethora
of applications in essentially all disciplines, from the humanities to life science
and medicine.

Neural network types

An artificial neural network (ANN), is a computational model that consists of lay-
ers of connected neurons, or nodes or units. We will refer to these interchangeably
as units or nodes, and sometimes as neurons.

It is supposed to mimic a biological nervous system by letting each neuron
interact with other neurons by sending signals in the form of mathematical
functions between layers. A wide variety of different ANNs have been developed,
but most of them consist of an input layer, an output layer and eventual layers
in-between, called hidden layers. All layers can contain an arbitrary number
of nodes, and each connection between two nodes is associated with a weight
variable.

Neural networks (also called neural nets) are neural-inspired nonlinear models
for supervised learning. As we will see, neural nets can be viewed as natural,
more powerful extensions of supervised learning methods such as linear and
logistic regression and soft-max methods we discussed earlier.

Feed-forward neural networks

The feed-forward neural network (FFNN) was the first and simplest type of
ANNSs that were devised. In this network, the information moves in only one
direction: forward through the layers.

Nodes are represented by circles, while the arrows display the connections
between the nodes, including the direction of information flow. Additionally,
each arrow corresponds to a weight variable (figure to come). We observe that
each node in a layer is connected to all nodes in the subsequent layer, making
this a so-called fully-connected FFNN.

Convolutional Neural Network

A different variant of FFNNs are convolutional neural networks (CNNs), which
have a connectivity pattern inspired by the animal visual cortex. Individual
neurons in the visual cortex only respond to stimuli from small sub-regions of
the visual field, called a receptive field. This makes the neurons well-suited to
exploit the strong spatially local correlation present in natural images. The
response of each neuron can be approximated mathematically as a convolution
operation. (figure to come)

Convolutional neural networks emulate the behaviour of neurons in the visual
cortex by enforcing a local connectivity pattern between nodes of adjacent layers:
Each node in a convolutional layer is connected only to a subset of the nodes
in the previous layer, in contrast to the fully-connected FFNN. Often, CNNs
consist of several convolutional layers that learn local features of the input, with
a fully-connected layer at the end, which gathers all the local data and produces
the outputs. They have wide applications in image and video recognition.

Recurrent neural networks

So far we have only mentioned ANNs where information flows in one direction:
forward. Recurrent neural networks on the other hand, have connections between
nodes that form directed cycles. This creates a form of internal memory which
are able to capture information on what has been calculated before; the output is
dependent on the previous computations. Recurrent NNs make use of sequential
information by performing the same task for every element in a sequence, where
each element depends on previous elements. An example of such information
is sentences, making recurrent NNs especially well-suited for handwriting and
speech recognition.

Other types of networks

There are many other kinds of ANNs that have been developed. One type that
is specifically designed for interpolation in multidimensional space is the radial
basis function (RBF) network. RBFs are typically made up of three layers: an
input layer, a hidden layer with non-linear radial symmetric activation functions

and a linear output layer (”linear” here means that each node in the output layer
has a linear activation function). The layers are normally fully-connected and
there are no cycles, thus RBFs can be viewed as a type of fully-connected FFNN.
They are however usually treated as a separate type of NN due the unusual
activation functions.

Multilayer perceptrons

One uses often so-called fully-connected feed-forward neural networks with three
or more layers (an input layer, one or more hidden layers and an output layer)
consisting of neurons that have non-linear activation functions.

Such networks are often called multilayer perceptrons (MLPs).

Why multilayer perceptrons?

According to the Universal approzimation theorem, a feed-forward neural network
with just a single hidden layer containing a finite number of neurons can approx-
imate a continuous multidimensional function to arbitrary accuracy, assuming
the activation function for the hidden layer is a non-constant, bounded and
monotonically-increasing continuous function.

Note that the requirements on the activation function only applies to the
hidden layer, the output nodes are always assumed to be linear, so as to not
restrict the range of output values.

Mathematical model

The output y is produced via the activation function f

y=1r (szxz + bi) = f(2),
i=1

This function receives z; as inputs. Here the activation z = (E?:l wix; + b;).
In an FFNN of such neurons, the inputs x; are the outputs of the neurons in the
preceding layer. Furthermore, an MLP is fully-connected, which means that each
neuron receives a weighted sum of the outputs of all neurons in the previous
layer.

Mathematical model

First, for each node i in the first hidden layer, we calculate a weighted sum 2} of
the input coordinates x;,

M
zi = szly% + by (2)
=1

Here b; is the so-called bias which is normally needed in case of zero activation
weights or inputs. How to fix the biases and the weights will be discussed below.

The value of 2} is the argument to the activation function f; of each node i, The
variable M stands for all possible inputs to a given node ¢ in the first layer. We
define the output y} of all neurons in layer 1 as

M
vi = F() = F | D wizs +0; (3)
j=1

where we assume that all nodes in the same layer have identical activation
functions, hence the notation f. In general, we could assume in the more general
case that different layers have different activation functions. In this case we
would identify these functions with a superscript [for the [-th layer,

N1

yh=flub) = £ D whiyl Tt bl (4)
Jj=1

where N is the number of nodes in layer [. When the output of all the nodes
in the first hidden layer are computed, the values of the subsequent layer can be
calculated and so forth until the output is obtained.

Mathematical model

The output of neuron 7 in layer 2 is thus,

N
v =D why) 4] (5)

j=1
N M

=D wiif! (Z Wl +b}> + b2 (6)
j=1 k=1

where we have substituted y,i with the inputs z. Finally, the ANN output reads
N

vl =12 Do whyi + o} (7)
j=1

= f3 | > wif? (Z wi f! (Z Wiy Tm + b,ﬁ) +b§> + b7 (8)
J k m

Mathematical model

We can generalize this expression to an MLP with [hidden layers. The complete
functional form is,

Nl Nl,—l NO

gt =D W > wli? (L (Z wk, T, + b}n) > +02 | +b3
j=1 k=1 n=1

(9)

which illustrates a basic property of MLPs: The only independent variables
are the input values x,,.

Mathematical model

This confirms that an MLP, despite its quite convoluted mathematical form, is
nothing more than an analytic function, specifically a mapping of real-valued
vectors £ € R® — ¢ € R™.

Furthermore, the flexibility and universality of an MLP can be illustrated
by realizing that the expression is essentially a nested sum of scaled activation
functions of the form

f(x) = cif(cor +c3) +ca (10)

where the parameters c; are weights and biases. By adjusting these param-
eters, the activation functions can be shifted up and down or left and right,
change slope or be rescaled which is the key to the flexibility of a neural network.

Matrix-vector notation. We can introduce a more convenient notation for
the activations in an A NN.

Additionally, we can represent the biases and activations as layer-wise column
vectors b; and fi, so that the i-th element of each vector is the bias b} and
activation yﬁ of node 4 in layer [respectively.

We have that W; is an N;_; x N; matrix, while Bl and ¢; are N; x 1 column
vectors. With this notation, the sum becomes a matrix-vector multiplication,
and we can write the equation for the activations of hidden layer 2 (assuming
three nodes for simplicity) as

72 = f2(Wag1 + b2) = fa w%l w%2 w%3 : y% + b% . (11)
Ww3; W3y W33 Y3 b3

Matrix-vector notation and activation. The activation of node 7 in layer
21is

3
i = f2 (wfly% +whys +wiys + b?) =f ngﬂyﬂl o). (12)
=1

This is not just a convenient and compact notation, but also a useful and
intuitive way to think about MLPs: The output is calculated by a series of

matrix-vector multiplications and vector additions that are used as input to the
activation functions. For each operation W;¢;_; we move forward one layer.

Activation functions. A property that characterizes a neural network, other
than its connectivity, is the choice of activation function(s). As described in, the
following restrictions are imposed on an activation function for a FFNN to fulfill
the universal approximation theorem

e Non-constant
e Bounded
e Monotonically-increasing

e Continuous

Activation functions, Logistic and Hyperbolic ones. The second require-
ment excludes all linear functions. Furthermore, in a MLP with only linear
activation functions, each layer simply performs a linear transformation of its
inputs.

Regardless of the number of layers, the output of the NN will be nothing
but a linear function of the inputs. Thus we need to introduce some kind of
non-linearity to the NN to be able to fit non-linear functions Typical examples
are the logistic Sigmoid

1

f(x):m,

and the hyperbolic tangent function

f(z) = tanh(x)

Relevance. The sigmoid function are more biologically plausible because the
output of inactive neurons are zero. Such activation function are called one-sided.
However, it has been shown that the hyperbolic tangent performs better than
the sigmoid for training MLPs. has become the most popular for deep neural
networks

"""The sigmotid function (or the logistic curve) is a

function that takes any real number, z, and outputs a number (0,1).

It is useful in neural networks for assigning weights on a relative scale.

The value z is the weighted sum of parameters involved in the learning algorithm."""

import numpy
import matplotlib.pyplot as plt
import math as mt

z = numpy.arange(-5, 5, .1)
sigma_fn = numpy.vectorize(lambda z: 1/(l+numpy.exp(-z)))
sigma = sigma_fn(z)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(z, sigma)
ax.set_ylim([-0.1, 1.1])
ax.set_x1im([-5,5])
ax.grid(True)

ax.set_xlabel(’z’)
ax.set_title(’sigmoid function’)

plt.show()
IlllllStep Funct,i’onllllll

z = numpy.arange(-5, 5, .02)

step_fn = numpy.vectorize(lambda z: 1.0 if z >= 0.0 else 0.0)
step = step_fn(z)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(z, step)
ax.set_ylim([-0.5, 1.5])
ax.set_x1im([-5,5])
ax.grid(True)
ax.set_xlabel(’z’)
ax.set_title(’step function’)

plt.show()

”,I”S'Z;ne Funct,ion”"”
z = numpy.arange(-2*mt.pi, 2*mt.pi, 0.1)
t = numpy.sin(z)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(z, t)
ax.set_ylim([-1.0, 1.0])
ax.set_x1lim([-2*mt.pi,2*mt.pil)
ax.grid(True)
ax.set_xlabel(’z’)
ax.set_title(’sine function’)

plt.show()

"""Plots a graph of the squashing function used by a rectified linear
,u'n,Lt mmnn

z = numpy.arange(-2, 2, .1)

zero = numpy.zeros(len(z))

y = numpy.max([zero, z], axis=0)

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(z, y)

ax.set_ylim([-2.0, 2.0])
ax.set_x1im([-2.0, 2.0])
ax.grid(True)

ax.set_xlabel(’z’)
ax.set_title(’Rectified linear unit’)

plt.show()

The multilayer perceptron (MLP)

The multilayer perceptron is a very popular, and easy to implement approach,
to deep learning. It consists of

1. A neural network with one or more layers of nodes between the input and
the output nodes.

2. The multilayer network structure, or architecture, or topology, consists of
an input layer, one or more hidden layers, and one output layer.

3. The input nodes pass values to the first hidden layer, its nodes pass the
information on to the second and so on till we reach the output layer.

As a convention it is normal to call a network with one layer of input units, one
layer of hidden units and one layer of output units as a two-layer network. A
network with two layers of hidden units is called a three-layer network etc etc.

For an MLP network there is no direct connection between the output
nodes/neurons/units and the input nodes/neurons/units. Hereafter we will call
the various entities of a layer for nodes. There are also no connections within a
single layer.

The number of input nodes does not need to equal the number of output
nodes. This applies also to the hidden layers. Each layer may have its own
number of nodes and activation functions.

The hidden layers have their name from the fact that they are not linked to
observables and as we will see below when we define the so-called activation 2,
we can think of this as a basis expansion of the original inputs Z. The difference
however between neural networks and say linear regression is that now these
basis functions (which will correspond to the weights in the network) are learned
from data. This results in an important difference between neural networks and
deep learning approaches on one side and methods like logistic regression or
linear regression and their modifications on the other side.

From one to many layers, the universal approximation the-
orem

A neural network with only one layer, what we called the simple perceptron, is
best suited if we have a standard binary model with clear (linear) boundaries
between the outcomes. As such it could equally well be replaced by standard
linear regression or logistic regression. Networks with one or more hidden layers
approximate systems with more complex boundaries.

As stated earlier, an important theorem in studies of neural networks, restated
without proof here, is the universal approximation theorem.

It states that a feed-forward network with a single hidden layer containing
a finite number of neurons can approximate continuous functions on compact
subsets of real functions. The theorem thus states that simple neural networks
can represent a wide variety of interesting functions when given appropriate

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf

parameters. It is the multilayer feedforward architecture itself which gives neural
networks the potential of being universal approximators.

Deriving the back propagation code for a multilayer per-
ceptron model

Note: figures will be inserted later!

As we have seen now in a feed forward network, we can express the final
output of our network in terms of basic matrix-vector multiplications. The
unknowwn quantities are our weights w;; and we need to find an algorithm for
changing them so that our errors are as small as possible. This leads us to the
famous back propagation algorithm.

The questions we want to ask are how do changes in the biases and the
weights in our network change the cost function and how can we use the final
output to modify the weights?

To derive these equations let us start with a plain regression problem and
define our cost function as

V) = 257 (i —)7,
i=1
where the t;s are our n targets (the values we want to reproduce), while
the outputs of the network after having propagated all inputs & are given by
y;. Below we will demonstrate how the basic equations arising from the back
propagation algorithm can be modified in order to study classification problems
with K classes.

Definitions

With our definition of the targets ¢, the outputs of the network ¢ and the inputs
% we define now the activation zé of node/neuron/unit j of the I-th layer as a
function of the bias, the weights which add up from the previous layer [— 1 and
the forward passes/outputs @'~! from the previous layer as

M1
1 _ 1oi-1 !
z; = E w;ja; + b,
i=1

where bl are the biases from layer . Here M;_; represents the total number
of nodes/neurons/units of layer I — 1. The figure here illustrates this equation.
We can rewrite this in a more compact form as the matrix-vector products we
discussed earlier,

3l = (Wl)TaH + i

l

With the activation values Z* we can in turn define the output of layer [as
Py

al = f(2') where f is our activation function. In the examples here we will use

10

https://www.nature.com/articles/323533a0

the sigmoid function discussed in our logistic regression lectures. We will also
use the same activation function f for all layers and their nodes. It means we
have

1
1+ exp —(z5)
Derivatives and the chain rule

From the definition of the activation zé we have

l
9z; _ 1
l i

Ow;;

and

azé- .
= w'.
-1 gi*

Oa;

With our definition of the activation function we have that (note that this

function depends only on zé)

dal
I (1 —ab) = F()(1 - F(21)).

— =
azj

Derivative of the cost function

With these definitions we can now compute the derivative of the cost function in
terms of the weights.
Let us specialize to the output layer [= L. Our cost function is

n

COTE) = 53 (i — 1) =

2 (alL _ti)Z’

1

DN | =

n
=1 =

The derivative of this function with respect to the weights is

aWwr) Oa

“ouf, ~) gt

The last partial derivative can easily be computed and reads (by applying the
chain rule)
aaf _ anL szL
3ijk 6sz 8wJLk

L—
= aJL(l - a’jL)a’k 17

11

Bringing it together, first back propagation equation
We have thus

OCWE) by o] b ygl!
owl (a —) aj (1 - aj)ay ™,
Defining
oL — ol(1 Ly (L _ oLy 9C
i = aj(1—aj) (a *tj)*f(zj)mv
J
and using the Hadamard product of two vectors we can write this as

5 s aC
St =f (zL)om.

This is an important expression. The second term on the right handside
measures how fast the cost function is changing as a function of the jth output
activation. If, for example, the cost function doesn’t depend much on a particular
output node j, then (5]’; will be small, which is what we would expect. The first
term on the right, measures how fast the activation function f is changing at a
given activation value z}'.

Notice that everything in the above equations is easily computed. In particu-

lar, we compute z]L while computing the behaviour of the network, and it is only

a small additional overhead to compute f’ (ZJL) The exact form of the derivative
with respect to the output depends on the form of the cost function. However,
provided the cost function is known there should be little trouble in calculating

aC
d(ak)

J

With the definition of 5jL we have a more compact definition of the derivative
of the cost function in terms of the weights, namely
aC(WL) 5LaL—1

L~ Y% %
awjk

Derivatives in terms of z]L

It is also easy to see that our previous equation can be written as

i dzf B dak dzF’
which can also be interpreted as the partial derivative of the cost function with

respect to the biases bJL , namely

su_ € _oc dak

5L_§%_8ic
7 obk oLk T obt

That is, the error (5]-L is exactly equal to the rate of change of the cost function
as a function of the bias.

12

Bringing it together

We have now three equations that are essential for the computations of the
derivatives of the cost function at the output layer. These equations are needed
to start the algorithm and they are

The starting equations.

7L
865(;2) _ §Fap, (13)
J
and a0
5 = 1'(z)) ; (14)
J d(ak)
and
oC
o =—, (15)
7o ob

An interesting consequence of the above equations is that when the activation
aﬁfl is small, the gradient term, that is the derivative of the cost function with
respect to the weights, will also tend to be small. We say then that the weight
learns slowly, meaning that it changes slowly when we minimize the weights via
say gradient descent. In this case we say the system learns slowly.

Another interesting feature is that is when the activation function, represented
by the sigmoid function here, is rather flat when we move towards its end values
0 and 1 (see the above Python codes). In these cases, the derivatives of the
activation function will also be close to zero, meaning again that the gradients
will be small and the network learns slowly again.

We need a fourth equation and we are set. We are going to propagate
backwards in order to the determine the weights and biases. In order to do so
we need to represent the error in the layer before the final one L — 1 in terms of
the errors in the final output layer.

Final back propagating equation
We have that (replacing L with a general layer [)
L _

J

We want to express this in terms of the equations for layer [+ 1. Using the chain
rule and summing over all k entries we have

ac 9zttt 9zttt
5; _ Z E_ _ 25?1 k

1 1 7
k 0z, 3zj k 8zj

13

and recalling that

l+1 § :lerl l_,’_bl+1

with M; being the number of nodes in layer [, we obtain
I+1
Z 0y wka)

This is our final equation.
We are now ready to set up the algorithm for back propagation and learning
the weights and biases.

Setting up the Back propagation algorithm
The four equations provide us with a way of computing the gradient of the cost

function. Let us write this out in the form of an algorithm.

First, we set up the input data & and the activations Z; of the input layer and
compute the activation function and the pertinent outputs a'.

Secondly, we perform then the feed forward till we reach the output layer and
compute all Z; of the input layer and compute the activation function and the
pertinent outputs a! for I =2,3,..., L.

Thereafter we compute the ouput error % by computing all

oc

Then we compute the back propagate error for each I =L —1,L —2,...,2 as

8= ot ().
k

Finally, we update the weights and the biases using gradient descent for each
l=L—-1,L—2,...,2 and update the weights and biases according to the rules

ke w 775[

0
1 l _ gl 1
J
The parameter n is the learning parameter discussed in connection with
the gradient descent methods. Here it is convenient to use stochastic gradient
descent (see the examples below) with mini-batches with an outer loop that

steps through multiple epochs of training.

14

Setting up a Multi-layer perceptron model for classification

We are now gong to develop an example based on the MNIST data base. This
is a classification problem and we need to use our cross-entropy function we
discussed in connection with logistic regression. The cross-entropy defines our
cost function for the classificaton problems with neural networks.

In binary classification with two classes (0,1) we define the logistic/sigmoid
function as the probability that a particular input is in class 0 or 1. This is
possible because the logistic function takes any input from the real numbers
and inputs a number between 0 and 1, and can therefore be interpreted as a
probability. It also has other nice properties, such as a derivative that is simple
to calculate.

For an input a from the hidden layer, the probability that the input « is in
class 0 or 1 is just. We let 0 represent the unknown weights and biases to be
adjusted by our equations). The variable x represents our activation values z.

We have)

P(yZOI:E,é):HTp(_@,

and . .
Ply=1|2,6)=1—-P(y=0]2,0),

where y € {0,1} and 0 represents the weights and biases of our network.

Defining the cost function

Our cost function is given as (see the Logistic regression lectures)
C(O)=-mP(D[0) == I[Py = 0)]+(1-y;) In[1-P(y; = 0)] = Y L(B).
i=1 '

This last equality means that we can interpret our cost function as a sum
over the loss function for each point in the dataset £;(d). The negative sign is
just so that we can think about our algorithm as minimizing a positive number,
rather than maximizing a negative number.

In multiclass classification it is common to treat each integer label as a so
called one-hot vector:

y=5 — §=1(0,0,0,0,0,1,0,0,0,0), and

y=1 — §=(0,1,0,0,0,0,0,0,0,0),

i.e. a binary bit string of length C, where C' = 10 is the number of classes in
the MNIST dataset (numbers from 0 to 9)..

If Z; is the ¢-th input (image), y;. refers to the c-th component of the i-th
output vector ;. The probability of &; being in class ¢ will be given by the
softmax function:

exp ((&?idden)Twc)

ZS;}] exp ((déﬂdden)T,@C/)

P(yic=11%;,0) =

9

15

which reduces to the logistic function in the binary case. The likelihood of
this C-class classifier is now given as:

D|9 ﬁl__[P(yic = 1)]¥=.

Again we take the negative log-likelihood to define our cost function:

C(f) = —log P(D | 0).

See the logistic regression lectures for a full definition of the cost function.

The back propagation equations need now only a small change, namely the
definition of a new cost function. We are thus ready to use the same equations
as before!

Example: binary classification problem

As an example of the above, relevant for project 2 as well, let us consider a
binary class. As discussed in our logistic regression lectures, we defined a cost
function in terms of the parameters 3 as

n

cB=-> (y log p(yili, B) + (i — yi)log 1 —p(yilxi,ﬁ)) :

i=1

where we had defined the logistic (sigmoid) function

exp (Bo + Bix;)
1+ exp (Bo + frxi)’

py; = 1|z,) =

and . .

The parameters B were defined using a minimization method like gradient descent
or Newton-Raphson’s method.
Now we replace x; with the activation 2! for a given layer [and the outputs
as y; = at = f(2}), with 2! now being a function of the weights wﬁj and biases b!.
We have then .
I 1C)
' 1+exp(zl)’

1
zfz g wué —|—bl

J

with

where the superscript [— 1 indicates that these are the outputs from layer [— 1.
Our cost function at the final layer [= L is now

n

C(W)=-— Z (tilogal + (1 —t;)log (1 — al)),

i=1

16

where we have defined the targets ¢;. The derivatives of the cost function with
respect to the output aX are then easily calculated and we get

8C(W) aiL - ti

dak aF(1—al)

%

In case we use another activation function than the logistic one, we need to
evaluate other derivatives.

The Softmax function

In case we employ the more general case given by the Softmax equation, we
need to evaluate the derivative of the activation function with respect to the
activation 2!, that is we need

0f(=4) _ 0f(s}) 0z Of(s]

7 1 1 1
8wjk 8zj awjk 8zj

-1
ap .

For the Softmax function we have

. 1)
/) Yo exp (zh,)

Its derivative with respect to zj gives

af(zh)
azé-

= f(2) (65 — f(%))
which in case of the simply binary model reduces to having i = j.

Developing a code for doing neural networks with back
propagation

One can identify a set of key steps when using neural networks to solve supervised
learning problems:

1. Collect and pre-process data

2. Define model and architecture
Choose cost function and optimizer
Train the model

Evaluate model performance on test data

A

Adjust hyperparameters (if necessary, network architecture)

17

Collect and pre-process data

Here we will be using the MNIST dataset, which is readily available through
the scikit-learn package. You may also find it for example here. The MNIST
(Modified National Institute of Standards and Technology) database is a large
database of handwritten digits that is commonly used for training various image
processing systems. The MNIST dataset consists of 70 000 images of size 28 x 28
pixels, each labeled from 0 to 9. The scikit-learn dataset we will use consists of a
selection of 1797 images of size 8 x 8 collected and processed from this database.

To feed data into a feed-forward neural network we need to represent the
inputs as a feature matrix X = (Ninputs, Mfeatures). Bach row represents an
input, in this case a handwritten digit, and each column represents a feature,
in this case a pixel. The correct answers, also known as labels or targets are
represented as a 1D array of integers Y = (ninputs) = (5,3,1,8, ...).

As an example, say we want to build a neural network using supervised
learning to predict Body-Mass Index (BMI) from measurements of height (in
m) and weight (in kg). If we have measurements of 5 people the feature matrix
could be for example:

1.85&81
1.71&65
X = [1.95&103 | ,
1.55&42
1.63&56

and the targets would be:

Y = (23.7,22.2,27.1,17.5,21.1)

Since each input image is a 2D matrix, we need to flatten the image (i.e.
"unravel" the 2D matrix into a 1D array) to turn the data into a feature matrix.
This means we lose all spatial information in the image, such as locality and
translational invariance. More complicated architectures such as Convolutional
Neural Networks can take advantage of such information, and are most commonly
applied when analyzing images.

import necessary packages
import numpy as np

import matplotlib.pyplot as plt
from sklearn import datasets

ensure the same random numbers appear every time
np.random. seed (0)
display images in motebook

Jmatplotlib inline
plt.rcParams[’figure.figsize’] = (12,12)

download MNIST dataset
digits = datasets.load_digits()

18

http://yann.lecun.com/exdb/mnist/

define inputs and labels
inputs = digits.images
labels = digits.target

(n_inputs, pixel_width, pixel_height) = " + str(inputs.shape))
(n_inputs) = " + str(labels.shape))

print ("inputs
print("labels

flatten the image

the value -1 means dimension is inferred from the remaining dimensions: 8x8 = 64
n_inputs = len(inputs)

inputs = inputs.reshape(n_inputs, -1)

print ("X = (n_inputs, n_features) = " + str(inputs.shape))

choose some random images to display
indices = np.arange(n_inputs)
random_indices = np.random.choice(indices, size=5)

for i, image in enumerate(digits.images[random_indices]):
plt.subplot(l, 5, i+1)
plt.axis(’off’)
plt.imshow(image, cmap=plt.cm.gray_r, interpolation=’nearest’)
plt.title("Label: %d" 7, digits.target[random_indices[i]l])
plt.show()

Train and test datasets

Performing analysis before partitioning the dataset is a major error, that can
lead to incorrect conclusions.

We will reserve 80% of our dataset for training and 20% for testing.

It is important that the train and test datasets are drawn randomly from our
dataset, to ensure no bias in the sampling. Say you are taking measurements
of weather data to predict the weather in the coming 5 days. You don’t want
to train your model on measurements taken from the hours 00.00 to 12.00, and
then test it on data collected from 12.00 to 24.00.

from sklearn.model_selection import train_test_split

one-liner from scikit-learn library

train_size = 0.8

test_size = 1 - train_size

X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels, train_size=train_size,
test_size=test_size)

equivalently in numpy

def train_test_split_numpy(inputs, labels, train_size, test_size):
n_inputs = len(inputs)
inputs_shuffled = inputs.copy()
labels_shuffled = labels.copy()

np.random. shuffle (inputs_shuffled)
np.random.shuffle(labels_shuffled)

train_end = int(n_inputs*train_size)
X_train, X_test = inputs_shuffled[:train_end], inputs_shuffled[train_end:]

19

Y_train, Y_test = labels_shuffled[:train_end], labels_shuffled[train_end:]
return X_train, X_test, Y_train, Y_test
#X_train, X_test, Y_train, Y _test = train_test_split_numpy(inputs, labels, train_size, test_size)

print ("Number of training images: " + str(len(X_train)))
print ("Number of test images: " + str(len(X_test)))

Define model and architecture

Our simple feed-forward neural network will consist of an input layer, a single
hidden layer and an output layer. The activation y of each neuron is a weighted
sum of inputs, passed through an activation function. In case of the simple
perceptron model we have

n
z= § w;a;,
=1

y:f(2)7

where f is the activation function, a; represents input from neuron 7 in the
preceding layer and w; is the weight to input 7. The activation of the neurons in
the input layer is just the features (e.g. a pixel value).

The simplest activation function for a neuron is the Heaviside function:

1, z>0
zZ) =
/) {0, otherwise

A feed-forward neural network with this activation is known as a perceptron.
For a binary classifier (i.e. two classes, 0 or 1, dog or not-dog) we can also use this
in our output layer. This activation can be generalized to k classes (using e.g. the
one-against-all strategy), and we call these architectures multiclass perceptrons.

However, it is now common to use the terms Single Layer Perceptron (SLP)
(1 hidden layer) and Multilayer Perceptron (MLP) (2 or more hidden layers) to
refer to feed-forward neural networks with any activation function.

Typical choices for activation functions include the sigmoid function, hyper-
bolic tangent, and Rectified Linear Unit (ReLU). We will be using the sigmoid
function o(z):

f@) = o) = 1,

which is inspired by probability theory (see logistic regression) and was most
commonly used until about 2011. See the discussion below concerning other
activation functions.

20

Layers

e Input

Since each input image has 8x8 = 64 pixels or features, we have an input layer
of 64 neurons.

e Hidden layer

We will use 50 neurons in the hidden layer receiving input from the neurons in
the input layer. Since each neuron in the hidden layer is connected to the 64
inputs we have 64x50 = 3200 weights to the hidden layer.

e Output

If we were building a binary classifier, it would be sufficient with a single neuron
in the output layer, which could output 0 or 1 according to the Heaviside function.
This would be an example of a hard classifier, meaning it outputs the class of the
input directly. However, if we are dealing with noisy data it is often beneficial
to use a soft classifier, which outputs the probability of being in class 0 or 1.

For a soft binary classifier, we could use a single neuron and interpret the
output as either being the probability of being in class 0 or the probability of
being in class 1. Alternatively we could use 2 neurons, and interpret each neuron
as the probability of being in each class.

Since we are doing multiclass classification, with 10 categories, it is natural to
use 10 neurons in the output layer. We number the neurons j =0,1,...,9. The
activation of each output neuron j will be according to the softmaz function:

exp (aT1d;)
9 ~ ~)
Zc:() €Xp (aTwc)
i.e. each neuron j outputs the probability of being in class j given an input
from the hidden layer a, with @; the weights of neuron j to the inputs. The

denominator is a normalization factor to ensure the outputs (probabilities) sum
up to 1. The exponent is just the weighted sum of inputs as before:

P(class j | input a) =

n
Zj = E wijaierj.
i=1

Since each neuron in the output layer is connected to the 50 inputs from the
hidden layer we have 50x10 = 500 weights to the output layer.

Weights and biases

Typically weights are initialized with small values distributed around zero, drawn
from a uniform or normal distribution. Setting all weights to zero means all
neurons give the same output, making the network useless.

Adding a bias value to the weighted sum of inputs allows the neural network
to represent a greater range of values. Without it, any input with the value 0

21

will be mapped to zero (before being passed through the activation). The bias
unit has an output of 1, and a weight to each neuron j, b;:

n
Zj = E wijaierj.
i=1

The bias weights b are often initialized to zero, but a small value like 0.01
ensures all neurons have some output which can be backpropagated in the first
training cycle.

building our neural network

n_inputs, n_features = X_train.shape

n_hidden_neurons = 50

n_categories = 10

we make the weights mormally distributed using numpy.random.randn
weights and bias in the hidden layer

hidden_weights = np.random.randn(n_features, n_hidden_neurons)
hidden_bias = np.zeros(n_hidden_neurons) + 0.01

weights and bias in the output layer

output_weights = np.random.randn(n_hidden_neurons, n_categories)
output_bias = np.zeros(n_categories) + 0.01

Feed-forward pass

Denote F' the number of features, H the number of hidden neurons and C' the
number of categories. For each input image we calculate a weighted sum of input
features (pixel values) to each neuron j in the hidden layer I:

F

1 _ Y

z; = E w;; i + by,
i=1

this is then passed through our activation function

aé— = f(zé)

We calculate a weighted sum of inputs (activations in the hidden layer) to
each neuron j in the output layer:

H
L _ L1 L
zi = g wijaierj.
i=1

Finally we calculate the output of neuron j in the output layer using the
softmax function:

L ep(h)
J C—1 :
Dm0 exp (z£)

22

Matrix multiplications

Since our data has the dimensions X = (Ninputs; N features) and our weights to
the hidden layer have the dimensions Whidden = (N featuress Mhidden), W€ can
easily feed the network all our training data in one go by taking the matrix
product

h
XW" = (ninputsa nhidden)y

and obtain a matrix that holds the weighted sum of inputs to the hidden
layer for each input image and each hidden neuron. We also add the bias to
obtain a matrix of weighted sums to the hidden layer Z":

S = X B,

meaning the same bias (1D array with size equal number of hidden neurons)
is added to each input image. This is then passed through the activation:

This is fed to the output layer:

b= oWk 4 bk,

Finally we receive our output values for each image and each category by
passing it through the softmax function:

output = softmaz(3Y) = (Ninputs, Neategories)-

setup the feed-forward pass, subscript h = hidden layer

def sigmoid(x):
return 1/(1 + np.exp(-x))

def feed_forward(X):
weighted sum of inputs to the hidden layer
z_h = np.matmul(X, hidden_weights) + hidden_bias
activation in the hidden layer
a_h = sigmoid(z_h)

weighted sum of inputs to the output layer

z_o = np.matmul(a_h, output_weights) + output_bias

softmaz output

axis O holds each input and axis 1 the probabilities of each category
exp_term = np.exp(z_o)

probabilities = exp_term / np.sum(exp_term, axis=1, keepdims=True)

return probabilities

probabilities = feed_forward(X_train)

print("probabilities = (n_inputs, n_categories) = " + str(probabilities.shape))
print("probability that image O is in category 0,1,2,...,9 = \n" + str(probabilities[0]))
print("probabilities sum up to: " + str(probabilities[0].sum()))

print ()

23

we obtain a prediction by taking the class with the highest likelihood

def predict(X):
probabilities = feed_forward(X)
return np.argmax(probabilities, axis=1)

predictions = predict(X_train)

print("predictions = (n_inputs) = " + str(predictions.shape))
print("prediction for image 0: " + str(predictions[0]))
print("correct label for image 0: " + str(Y_train[0]))

Choose cost function and optimizer

To measure how well our neural network is doing we need to introduce a cost
function. We will call the function that gives the error of a single sample output
the loss function, and the function that gives the total error of our network
across all samples the cost function. A typical choice for multiclass classification
is the cross-entropy loss, also known as the negative log likelihood.

In multiclass classification it is common to treat each integer label as a so
called one-hot vector:

y=5 — 9=1(0,0,0,0,0,1,0,0,0,0),

y=1 — §=1(0,1,0,0,0,0,0,0,0,0),

i.e. a binary bit string of length C, where C' = 10 is the number of classes in
the MNIST dataset.

Let y;. denote the c-th component of the i-th one-hot vector. We define the
cost function C as a sum over the cross-entropy loss for each point &; in the
dataset.

In the one-hot representation only one of the terms in the loss function is
non-zero, namely the probability of the correct category ¢’ (i.e. the category ¢’
such that y;» = 1). This means that the cross entropy loss only punishes you
for how wrong you got the correct label. The probability of category c is given
by the softmax function. The vector 0 represents the parameters of our network,
i.e. all the weights and biases.

Optimizing the cost function

The network is trained by finding the weights and biases that minimize the cost
function. One of the most widely used classes of methods is gradient descent
and its generalizations. The idea behind gradient descent is simply to adjust
the weights in the direction where the gradient of the cost function is large and
negative. This ensures we flow toward a local minimum of the cost function.
Each parameter 0 is iteratively adjusted according to the rule

Oiy1 = 0; —nVC(0;),

24

where 7 is known as the learning rate, which controls how big a step we take
towards the minimum. This update can be repeated for any number of iterations,
or until we are satisfied with the result.

A simple and effective improvement is a variant called Batch Gradient De-
scent. Instead of calculating the gradient on the whole dataset, we calculate an
approximation of the gradient on a subset of the data called a minibatch. If
there are N data points and we have a minibatch size of M, the total number
of batches is N/M. We denote each minibatch By, with k = 1,2,..., N/M. The
gradient then becomes:

1 & 1
ve(©) = szi(e) SRy 'Z VLi(0),
=1 i€ By
i.e. instead of averaging the loss over the entire dataset, we average over a
minibatch.
This has two important benefits:

1. Introducing stochasticity decreases the chance that the algorithm becomes
stuck in a local minima.

2. It significantly speeds up the calculation, since we do not have to use the
entire dataset to calculate the gradient.

The various optmization methods, with codes and algorithms, are discussed in
our lectures on Gradient descent approaches.

Regularization

It is common to add an extra term to the cost function, proportional to the size
of the weights. This is equivalent to constraining the size of the weights, so that
they do not grow out of control. Constraining the size of the weights means that
the weights cannot grow arbitrarily large to fit the training data, and in this
way reduces overfitting.

We will measure the size of the weights using the so called L2-norm, meaning
our cost function becomes:

N N N
1 1 . 1
ve(h) = NZVQ(@) — NZVQ(G)—MHwH% = NZW(@)HZU@,
i=1 i=1 i=1 ij

i.e. we sum up all the weights squared. The factor A is known as a regular-
ization parameter.

In order to train the model, we need to calculate the derivative of the cost
function with respect to every bias and weight in the network. In total our
network has (6441) x50 = 3250 weights in the hidden layer and (504+1) x10 = 510
weights to the output layer (+1 for the bias), and the gradient must be calculated
for every parameter. We use the backpropagation algorithm discussed above.
This is a clever use of the chain rule that allows us to calculate the gradient
efficently.

25

https://compphysics.github.io/MachineLearning/doc/pub/Splines/html/Splines-bs.html

Matrix multiplication

To more efficently train our network these equations are implemented using
matrix operations. The error in the output layer is calculated simply as, with ¢
being our targets,

6L =t— Yy = (ninput57 ncategories)-

The gradient for the output weights is calculated as

AT
VWL =a 5L - (nhiddenancategories)v

where & = (Ninputs, Mhidden)- This simply means that we are summing up
the gradients for each input. Since we are going backwards we have to transpose
the activation matrix.

The gradient with respect to the output bias is then

MNinputs
Vb, = E (5[, = (ncategories)'
=1

The error in the hidden layer is

Ay =6 Wi o f(zn) =6 WE oan o (1 —an) = (Ninputss Nhidden)s

where f’(ap) is the derivative of the activation in the hidden layer. The
matrix products mean that we are summing up the products for each neuron
in the output layer. The symbol o denotes the Hadamard product, meaning
element-wise multiplication.

This again gives us the gradients in the hidden layer:

VW, = XT5h = (nfeatuT637 nhidden)v

Ninputs

Vbh =Y On= (Mhidden)-

i=1

to categorical turns our integer vector into a onehot representation
from sklearn.metrics import accuracy_score

one-hot in numpy

def to_categorical_numpy(integer_vector):
n_inputs = len(integer_vector)
n_categories = np.max(integer_vector) + 1
onehot_vector = np.zeros((n_inputs, n_categories))
onehot_vector[range(n_inputs), integer_vector] = 1

return onehot_vector

#Y_train_onehot, Y_test_onehot = to_categorical(Y_train), to_categorical(Y_test)
Y_train_onehot, Y_test_onehot = to_categorical_numpy(Y_train), to_categorical_numpy(Y_test)

26

def feed_forward_train(X):
weighted sum of inputs to the hidden layer
z_h = np.matmul (X, hidden_weights) + hidden_bias
activation in the hidden layer
a_h = sigmoid(z_h)

weighted sum of inputs to the output layer

z_o = np.matmul(a_h, output_weights) + output_bias

softmaz output

axis O holds each input and axis 1 the probabilities of each category
exp_term = np.exp(z_o)

probabilities = exp_term / np.sum(exp_term, axis=1, keepdims=True)

for backpropagation need activations in hidden and output layers
return a_h, probabilities

def backpropagation(X, Y):
a_h, probabilities = feed_forward_train(X)

error in the output layer

error_output = probabilities - Y

error in the hidden layer

error_hidden = np.matmul (error_output, output_weights.T) * a_h * (1 - a_h)

gradients for the output layer
output_weights_gradient = np.matmul(a_h.T, error_output)
output_bias_gradient = np.sum(error_output, axis=0)

gradient for the hidden layer
hidden_weights_gradient = np.matmul(X.T, error_hidden)
hidden_bias_gradient = np.sum(error_hidden, axis=0)

return output_weights_gradient, output_bias_gradient, hidden_weights_gradient, hidden_bias_gr:

print("0ld accuracy on training data: " + str(accuracy_score(predict(X_train), Y_train)))
eta = 0.01
Imbd = 0.01

for i in range(1000):
calculate gradients
dWo, dBo, dWh, dBh = backpropagation(X_train, Y_train_onehot)

regularization term gradients
dWo += 1lmbd * output_weights
dWh += 1lmbd * hidden_weights

update wetights and biases
output_weights -= eta * dWo
output_bias -= eta * dBo
hidden_weights -= eta * dWh
hidden_bias -= eta * dBh

print("New accuracy on training data: " + str(accuracy_score(predict(X_train), Y_train)))

Improving performance

As we can see the network does not seem to be learning at all. It seems to be
just guessing the label for each image. In order to obtain a network that does
something useful, we will have to do a bit more work.

27

The choice of hyperparameters such as learning rate and regularization
parameter is hugely influential for the performance of the network. Typically a
grid-search is performed, wherein we test different hyperparameters separated
by orders of magnitude. For example we could test the learning rates n =
1076,1075,...,10~! with different regularization parameters A = 1076, ..., 1070,

Next, we haven’t implemented minibatching yet, which introduces stochastic-
ity and is though to act as an important regularizer on the weights. We call a
feed-forward 4 backward pass with a minibatch an iteration, and a full training
period going through the entire dataset (n/M batches) an epoch.

If this does not improve network performance, you may want to consider
altering the network architecture, adding more neurons or hidden layers. Andrew
Ng goes through some of these considerations in this video. You can find a
summary of the video here.

Full object-oriented implementation

It is very natural to think of the network as an object, with specific instances of
the network being realizations of this object with different hyperparameters. An
implementation using Python classes provides a clean structure and interface,
and the full implementation of our neural network is given below.

class NeuralNetwork:
def __init__(

self,
X_data,
Y_data,
n_hidden_neurons=50,
n_categories=10,
epochs=10,
batch_size=100,
eta=0.1,
1mbd=0.0):

self.X_data_full
self.Y_data_full

X_data
Y_data

self.n_inputs = X_data.shape[0]

self .n_features = X_data.shape[1]
self.n_hidden_neurons = n_hidden_neurons
self.n_categories = n_categories

self.epochs = epochs

self.batch_size = batch_size

self .iterations = self.n_inputs // self.batch_size
self.eta = eta

self.lmbd = 1mbd

self.create_biases_and_weights()

def create_biases_and_weights(self):

self .hidden_weights = np.random.randn(self.n_features, self.n_hidden_neurons)

self .hidden_bias = np.zeros(self.n_hidden_neurons) + 0.01

self.output_weights = np.random.randn(self.n_hidden_neurons, self.n_categories)

self .output_bias = np.zeros(self.n_categories) + 0.01

28

https://youtu.be/F1ka6a13S9I
https://kevinzakka.github.io/2016/09/26/applying-deep-learning/

def feed_forward(self):
feed-forward for training
self.z_h = np.matmul (self.X_data, self.hidden_weights) + self.hidden_bias
self.a_h = sigmoid(self.z_h)

self.z_o = np.matmul(self.a_h, self.output_weights) + self.output_bias

exp_term = np.exp(self.z_o)
self .probabilities = exp_term / np.sum(exp_term, axis=1, keepdims=True)

def feed_forward_out(self, X):
feed-forward for output
z_h = np.matmul(X, self.hidden_weights) + self.hidden_bias
a_h = sigmoid(z_h)

z_o = np.matmul(a_h, self.output_weights) + self.output_bias
exp_term = np.exp(z_o)

probabilities = exp_term / np.sum(exp_term, axis=1, keepdims=True)
return probabilities

def backpropagation(self):
error_output = self.probabilities - self.Y_data
error_hidden = np.matmul(error_output, self.output_weights.T) * self.a_h * (1 - self.a_h)

self.output_weights_gradient = np.matmul(self.a_h.T, error_output)
self .output_bias_gradient = np.sum(error_output, axis=0)

self .hidden_weights_gradient = np.matmul(self.X_data.T, error_hidden)
self .hidden_bias_gradient = np.sum(error_hidden, axis=0)

if self.lmbd > 0.0:
self.output_weights_gradient += self.lmbd * self.output_weights
self .hidden_weights_gradient += self.lmbd * self.hidden_weights

self.output_weights -= self.eta * self.output_weights_gradient
self.output_bias -= self.eta * self.output_bias_gradient
self.hidden_weights -= self.eta * self.hidden_weights_gradient
self .hidden_bias -= self.eta * self.hidden_bias_gradient

def predict(self, X):
probabilities = self.feed_forward_out (X)
return np.argmax(probabilities, axis=1)

def predict_probabilities(self, X):
probabilities = self.feed_forward_out (X)
return probabilities

def train(self):
data_indices = np.arange(self.n_inputs)

for i in range(self.epochs):
for j in range(self.iterations):
pick datapoints with replacement
chosen_datapoints = np.random.choice(
data_indices, size=self.batch_size, replace=False
)

minibatch training data
self .X_data = self.X_data_full[chosen_datapoints]

29

self.Y_data = self.Y_data_full[chosen_datapoints]

self.feed_forward()
self.backpropagation()

Evaluate model performance on test data

To measure the performance of our network we evaluate how well it does it data
it has never seen before, i.e. the test data. We measure the performance of the
network using the accuracy score. The accuracy is as you would expect just the
number of images correctly labeled divided by the total number of images. A
perfect classifier will have an accuracy score of 1.

Z;L:1 I@z = yi)

Accuracy = ==—=—"— "~/
n

where [is the indicator function, 1 if §; = y; and 0 otherwise.

epochs = 100
batch_size = 100

dnn = NeuralNetwork(X_train, Y_train_onehot, eta=eta, lmbd=lmbd, epochs=epochs, batch_size=batch_
n_hidden_neurons=n_hidden_neurons, n_categories=n_categories)

dnn.train()

test_predict = dnn.predict(X_test)

accuracy score from scikit library
print("Accuracy score on test set: ", accuracy_score(Y_test, test_predict))

equivalent in numpy
def accuracy_score_numpy(Y_test, Y_pred):
return np.sum(Y_test == Y_pred) / len(Y_test)

#print ("Accuracy score on test set: ", accuracy_score_numpy(Y_test, test_predict))

Adjust hyperparameters

We now perform a grid search to find the optimal hyperparameters for the
network. Note that we are only using 1 layer with 50 neurons, and human
performance is estimated to be around 98% (2% error rate).

eta_vals = np.logspace(-5, 1, 7)
lmbd_vals = np.logspace(-5, 1, 7)
store the models for later use
DNN_numpy = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

grid search
for i, eta in enumerate(eta_vals):
for j, 1mbd in enumerate(lmbd_vals):
dnn = NeuralNetwork(X_train, Y_train_onehot, eta=eta, lmbd=lmbd, epochs=epochs, batch_size
n_hidden_neurons=n_hidden_neurons, n_categories=n_categories)
dnn.train()

DNN_numpy[i] [j] = dnn

test_predict = dnn.predict(X_test)

30

print("Learning rate = ", eta)

print("Lambda = ", lmbd)
print("Accuracy score on test set: ", accuracy_score(Y_test, test_predict))
print()

Visualization

visual representation of grid search
uses seaborn heatmap, you can also do this with matplotlidb imshow
import seaborn as sns

sns.set ()

train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))

for i in range(len(eta_vals)):
for j in range(len(lmbd_vals)):
dnn = DNN_numpy[i] [j]

train_pred = dnn.predict(X_train)
test_pred = dnn.predict(X_test)

train_accuracy[i] [j] = accuracy_score(Y_train, train_pred)
test_accuracy[i] [j] = accuracy_score(Y_test, test_pred)

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")

ax.set_ylabel("η")

ax.set_xlabel("λ")

plt.show()

fig, ax = plt.subplots(figsize = (10, 10))

sns.heatmap (test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

scikit-learn implementation

scikit-learn focuses more on traditional machine learning methods, such as
regression, clustering, decision trees, etc. As such, it has only two types of neural
networks: Multi Layer Perceptron outputting continuous values, MPL Regressor,
and Multi Layer Perceptron outputting labels, MLPClassifier. We will see how
simple it is to use these classes.

scikit-learn implements a few improvements from our neural network, such
as early stopping, a varying learning rate, different optimization methods, etc.
We would therefore expect a better performance overall.

from sklearn.neural_network import MLPClassifier

store models for later use
DNN_scikit = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

31

for i, eta in enumerate(eta_vals):
for j, 1lmbd in enumerate(lmbd_vals):
dnn = MLPClassifier(hidden_layer_sizes=(n_hidden_neurons), activation=’logistic’,
alpha=1mbd, learning_rate_init=eta, max_iter=epochs)
dnn.fit(X_train, Y_train)

DNN_scikit[i] [j] = dnn

print("Learning rate = ", eta)
print("Lambda = ", lmbd)
print("Accuracy score on test set: ", dnn.score(X_test, Y_test))
print()
Visualization
optional

visual representation of grid search
uses seaborn heatmap, could probably do this in matplotlid
import seaborn as sns

sns.set()

train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))

for i in range(len(eta_vals)):
for j in range(len(lmbd_vals)):
dnn = DNN_scikit[i] [j]

train_pred = dnn.predict(X_train)
test_pred = dnn.predict(X_test)

train_accuracy[i] [j] = accuracy_score(Y_train, train_pred)
test_accuracy[i] [j] = accuracy_score(Y_test, test_pred)

fig, ax = plt.subplots(figsize = (10, 10))

sns.heatmap (train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

Building neural networks in Tensorflow and Keras

Now we want to build on the experience gained from our neural network imple-
mentation in NumPy and scikit-learn and use it to construct a neural network
in Tensorflow. Once we have constructed a neural network in NumPy and

32

Tensorflow, building one in Keras is really quite trivial, though the performance
may suffer.

In our previous example we used only one hidden layer, and in this we will
use two. From this it should be quite clear how to build one using an arbitrary
number of hidden layers, using data structures such as Python lists or NumPy
arrays.

Tensorflow

Tensorflow is an open source library machine learning library developed by the
Google Brain team for internal use. It was released under the Apache 2.0 open
source license in November 9, 2015.

Tensorflow is a computational framework that allows you to construct machine
learning models at different levels of abstraction, from high-level, object-oriented
APIs like Keras, down to the C++ kernels that Tensorflow is built upon. The
higher levels of abstraction are simpler to use, but less flexible, and our choice
of implementation should reflect the problems we are trying to solve.

Tensorflow uses so-called graphs to represent your computation in terms
of the dependencies between individual operations, such that you first build a
Tensorflow graph to represent your model, and then create a Tensorflow session
to run the graph.

In this guide we will analyze the same data as we did in our NumPy and
scikit-learn tutorial, gathered from the MNIST database of images. We will give
an introduction to the lower level Python Application Program Interfaces (APIs),
and see how we use them to build our graph. Then we will build (effectively) the
same graph in Keras, to see just how simple solving a machine learning problem
can be.

To install tensorflow on Unix/Linux systems, use pip as

pip3 install tensorflow
and/or if you use anaconda, just write (or install from the graphical user
interface)

conda install tensorflow

Collect and pre-process data

import necessary packages
import numpy as np

import matplotlib.pyplot as plt
from sklearn import datasets

ensure the same random numbers appear every time
np.random.seed (0)
display images in motebook

Jmatplotlib inline
plt.rcParams[’figure.figsize’] = (12,12)

33

https://www.tensorflow.org/guide/graphs

download MNIST dataset
digits = datasets.load_digits()

define inputs and labels
inputs = digits.images
labels = digits.target

print("inputs = (n_inputs, pixel_width, pixel_height) = " + str(inputs.shape))
print("labels = (n_inputs) = " + str(labels.shape))

flatten the image

the value -1 means dimension is inferred from the remaining dimensions: 8x8 = 64
n_inputs = len(inputs)

inputs = inputs.reshape(n_inputs, -1)

print ("X = (n_inputs, n_features) = " + str(inputs.shape))

choose some random images to display
indices = np.arange(n_inputs)
random_indices = np.random.choice(indices, size=5)

for i, image in enumerate(digits.images[random_indices]):
plt.subplot(l, 5, i+1)
plt.axis(’off’)
plt.imshow(image, cmap=plt.cm.gray_r, interpolation=’nearest’)
plt.title("Label: %d" 7 digits.target[random_indices[i]l])
plt.show()

from keras.utils import to_categorical
from sklearn.model_selection import train_test_split

one-hot representation of labels
labels = to_categorical(labels)

split into train and test data

train_size = 0.8

test_size = 1 - train_size

X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels, train_size=train_size,
test_size=test_size)

Using TensorFlow backend

1. Define model and architecture

2. Choose cost function and optimizer

import temnsorflow as tf

class NeuralNetworkTensorflow:
def __init__(
self,
X_train,
Y_train,
X_test,
Y_test,
n_neurons_layer1=100,

34

def

def

n_neurons_layer2=50,
n_categories=2,
epochs=10,
batch_size=100,
eta=0.1,

1mbd=0.0) :

keep track of number of steps
self .global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name=’global_step’)

self .X_train = X_train
self.Y_train = Y_train
self . X_test = X_test
self.Y_test = Y_test

self.n_inputs = X_train.shape[0]
self.n_features = X_train.shape[1]
self.n_neurons_layerl = n_neurons_layerl
self.n_neurons_layer2 = n_neurons_layer2
self.n_categories = n_categories

self.epochs = epochs

self .batch_size = batch_size

self.iterations = self.n_inputs // self.batch_size
self.eta = eta

self.lmbd = 1mbd

build network piece by piece

name scopes (with) are used to enforce creation of new variables
https://www.tensorflow.org/quide/variables
self.create_placeholders()

self.create_DNN()

self.create_loss()

self.create_optimiser ()

self.create_accuracy()

create_placeholders(self):

placeholders are fine here, but "Datasets” are the preferred method

of streaming data into a model

with tf.name_scope(’data’):
self.X = tf.placeholder(tf.float32, shape=(None, self.n_features), name=’X_data’)
self.Y = tf.placeholder(tf.float32, shape=(None, self.n_categories), name=’Y_data’)

create_DNN(self):
with tf.name_scope(’DNN’):
the weights are stored to calculate regularization loss later

Fully connected layer 1

self.W_fcl = self.weight_variable([self.n_features, self.n_neurons_layerl], name=’fcl

b_fcl
a_fcl

self.bias_variable([self.n_neurons_layerl], name=’fcl’, dtype=tf.float32)
tf.nn.sigmoid(tf.matmul(self.X, self.W_fcl) + b_fcl)

Fully connected layer 2

self .W_fc2 = self.weight_variable([self.n_neurons_layerl, self.n_neurons_layer2], nam

b_fc2
a_fc2

self.bias_variable([self.n_neurons_layer2], name=’fc2’, dtype=tf.float32)
tf.nn.sigmoid(tf .matmul(a_fcl, self.W_fc2) + b_fc2)

Output layer

self .W_out = self.weight_variable([self.n_neurons_layer2, self.n_categories], name=’o

b_out = self.bias_variable([self.n_categories], name=’out’, dtype=tf.float32)
self.z_out = tf.matmul(a_fc2, self.W_out) + b_out

35

def create_loss(self):
with tf.name_scope(’loss’):
softmax_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=self."

regularizer_loss_fcl = tf.nn.12_loss(self.W_fcl)
regularizer_loss_fc2 = tf.nn.12_loss(self.W_£fc2)
regularizer_loss_out = tf.nn.12_loss(self.W_out)
regularizer_loss = self.lmbd*(regularizer_loss_fcl + regularizer_loss_fc2 + regulariz

self.loss = softmax_loss + regularizer_loss

def create_accuracy(self):
with tf.name_scope(’accuracy’):
probabilities = tf.nn.softmax(self.z_out)
predictions = tf.argmax(probabilities, axis=1)
labels = tf.argmax(self.Y, axis=1)

correct_predictions = tf.equal(predictions, labels)
correct_predictions = tf.cast(correct_predictions, tf.float32)
self.accuracy = tf.reduce_mean(correct_predictions)

def create_optimiser(self):
with tf.name_scope(’optimizer’):
self.optimizer = tf.train.GradientDescentOptimizer(learning rate=self.eta) .minimize (s

def weight_variable(self, shape, name=’’, dtype=tf.float32):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name, dtype=dtype)

def bias_variable(self, shape, name=’’, dtype=tf.float32):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name, dtype=dtype)

def fit(self):
data_indices = np.arange(self.n_inputs)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(self.epochs):
for j in range(self.iterations):
chosen_datapoints = np.random.choice(data_indices, size=self.batch_size, repl:
batch_X, batch_Y = self.X_train[chosen_datapoints], self.Y_train[chosen_datap

sess.run([DNN.loss, DNN.optimizer],
feed_dict={DNN.X: batch_X,
DNN.Y: batch_Y})
accuracy = sess.run(DNN.accuracy,
feed_dict={DNN.X: batch_X,
DNN.Y: batch_Y})
step = sess.run(DNN.global_step)

self .train_loss, self.train_accuracy = sess.run([DNN.loss, DNN.accuracy],
feed_dict={DNN.X: self.X_train,
DNN.Y: self.Y_train})

self.test_loss, self.test_accuracy = sess.run([DNN.loss, DNN.accuracy],

feed_dict={DNN.X: self.X_test,
DNN.Y: self.Y_test})

36

Optimizing and using gradient descent

epochs = 100
batch_size = 100
n_neurons_layerl = 100
n_neurons_layer2 = 50
n_categories = 10

eta_vals = np.logspace(-5, 1, 7)
lmbd_vals = np.logspace(-5, 1, 7)

DNN_tf = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

for i, eta in enumerate(eta_vals):
for j, 1mbd in enumerate(lmbd_vals):
DNN = NeuralNetworkTensorflow(X_train, Y_train, X_test, Y_test,
n_neurons_layerl, n_neurons_layer2, n_categories,
epochs=epochs, batch_size=batch_size, eta=eta, 1lmbd=1mbd)
DNN.fit ()

DNN_tf[i] [j] = DNN

print("Learning rate = ", eta)
print("Lambda = ", lmbd)
print("Test accuracy: %.3f" 7, DNN.test_accuracy)
print()
optional

visual representation of grid search
uses seaborn heatmap, could probably do this in matplotlid
import seaborn as sns

sns.set()

train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))

for i in range(len(eta_vals)):
for j in range(len(lmbd_vals)):
DNN = DNN_tf[i] [j]

train_accuracy[i] [j] = DNN.train_accuracy
test_accuracy[i] [j] = DNN.test_accuracy

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")

ax.set_ylabel("η")

ax.set_xlabel("λ")

plt.show()

optional

we can use log files to wisualize our graph in Tensorboard
writer = tf.summary.FileWriter(’logs/’)
writer.add_graph(tf.get_default_graph())

37

Using Keras

Keras is a high level neural network that supports Tensorflow, CTNK and
Theano as backends. If you have Tensorflow installed Keras is available through
the tf.keras module. If you have Anaconda installed you may run the following
command

conda install keras

Alternatively, if you have Tensorflow or one of the other supported backends
install you may use the pip package manager:

pip3 install keras

or look up the instructions here.

from keras.models import Sequential
from keras.layers import Dense

from keras.regularizers import 12
from keras.optimizers import SGD

def create_neural_network_keras(n_neurons_layerl, n_neurons_layer2, n_categories, eta, lmbd):
model = Sequential()
model.add(Dense(n_neurons_layerl, activation=’sigmoid’, kernel_regularizer=12(1lmbd)))
model.add(Dense(n_neurons_layer2, activation=’sigmoid’, kernel_regularizer=12(1lmbd)))
model .add (Dense(n_categories, activation=’softmax’))

sgd = SGD(1lr=eta)
model.compile(loss=’categorical_crossentropy’, optimizer=sgd, metrics=[’accuracy’])

return model
DNN_keras = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

for i, eta in enumerate(eta_vals):
for j, 1lmbd in enumerate(lmbd_vals):
DNN = create_neural_network_keras(n_neurons_layerl, n_neurons_layer2, n_categories,
eta=eta, lmbd=1mbd)
DNN.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=0)
scores = DNN.evaluate(X_test, Y_test)

DNN_keras[i] [j] = DNN

print("Learning rate = ", eta)
print("Lambda = ", lmbd)
print("Test accuracy: %.3f" % scores[1])
print()

optional

visual representation of grid search

uses seaborn heatmap, could probably do this in matplotlid
import seaborn as sns

sns.set ()

train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))

for i in range(len(eta_vals)):

38

https://en.wikipedia.org/wiki/Application_programming_interface
https://keras.io/

for j in range(len(lmbd_vals)):
DNN = DNN_keras[i] [j]

train_accuracy[i] [j] = DNN.evaluate(X_train, Y_train) [1]
test_accuracy[i] [j] = DNN.evaluate(X_test, Y_test) [1]

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")

ax.set_ylabel("η")

ax.set_xlabel ("λ")

plt.show()

Which activation function should I use?

The Back propagation algorithm we derived above works by going from the
output layer to the input layer, propagating the error gradient on the way. Once
the algorithm has computed the gradient of the cost function with regards to
each parameter in the network, it uses these gradients to update each parameter
with a Gradient Descent (GD) step.

Unfortunately for us, the gradients often get smaller and smaller as the
algorithm progresses down to the first hidden layers. As a result, the GD update
leaves the lower layer connection weights virtually unchanged, and training never
converges to a good solution. This is known in the literature as the vanishing
gradients problem.

In other cases, the opposite can happen, namely the the gradients can grow
bigger and bigger. The result is that many of the layers get large updates of the
weights the algorithm diverges. This is the exploding gradients problem,
which is mostly encountered in recurrent neural networks. More generally, deep
neural networks suffer from unstable gradients, different layers may learn at
widely different speeds

Is the Logistic activation function (Sigmoid) our choice?

Although this unfortunate behavior has been empirically observed for quite a
while (it was one of the reasons why deep neural networks were mostly abandoned
for a long time), it is only around 2010 that significant progress was made in
understanding it.

A paper titled Understanding the Difficulty of Training Deep Feedforward
Neural Networks by Xavier Glorot and Yoshua Bengio found that the problems
with the popular logistic sigmoid activation function and the weight initialization
technique that was most popular at the time, namely random initialization using
a normal distribution with a mean of 0 and a standard deviation of 1.

39

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html

They showed that with this activation function and this initialization scheme,
the variance of the outputs of each layer is much greater than the variance of its
inputs. Going forward in the network, the variance keeps increasing after each
layer until the activation function saturates at the top layers. This is actually
made worse by the fact that the logistic function has a mean of 0.5, not 0 (the
hyperbolic tangent function has a mean of 0 and behaves slightly better than
the logistic function in deep networks).

The derivative of the Logistic funtion

Looking at the logistic activation function, when inputs become large (negative
or positive), the function saturates at 0 or 1, with a derivative extremely close to
0. Thus when backpropagation kicks in, it has virtually no gradient to propagate
back through the network, and what little gradient exists keeps getting diluted
as backpropagation progresses down through the top layers, so there is really
nothing left for the lower layers.

In their paper, Glorot and Bengio propose a way to significantly alleviate
this problem. We need the signal to flow properly in both directions: in the
forward direction when making predictions, and in the reverse direction when
backpropagating gradients. We don’t want the signal to die out, nor do we want
it to explode and saturate. For the signal to flow properly, the authors argue
that we need the variance of the outputs of each layer to be equal to the variance
of its inputs, and we also need the gradients to have equal variance before and
after flowing through a layer in the reverse direction.

One of the insights in the 2010 paper by Glorot and Bengio was that the
vanishing/exploding gradients problems were in part due to a poor choice of
activation function. Until then most people had assumed that if Nature had
chosen to use roughly sigmoid activation functions in biological neurons, they
must be an excellent choice. But it turns out that other activation functions
behave much better in deep neural networks, in particular the ReLU activation
function, mostly because it does not saturate for positive values (and also because
it is quite fast to compute).

The RELU function family

The ReLU activation function suffers from a problem known as the dying ReLUs:
during training, some neurons effectively die, meaning they stop outputting
anything other than 0.

In some cases, you may find that half of your network’s neurons are dead,
especially if you used a large learning rate. During training, if a neuron’s weights
get updated such that the weighted sum of the neuron’s inputs is negative, it
will start outputting 0. When this happen, the neuron is unlikely to come back
to life since the gradient of the ReLU function is 0 when its input is negative.

To solve this problem, nowadays practitioners use a variant of the ReLLU
function, such as the leaky ReLU discussed above or the so-called exponential
linear unit (ELU) function

40

[a(exp(2)—1) z<0,
ELU(z) = { i 2o

Which activation function should we use?

In general it seems that the ELU activation function is better than the leaky
ReLU function (and its variants), which is better than ReLU. ReLU performs
better than tanh which in turn performs better than the logistic function.

If runtime performance is an issue, then you may opt for the leaky ReLLU
function over the ELU function If you don’t want to tweak yet another hyperpa-
rameter, you may just use the default « of 0.01 for the leaky ReLLU, and 1 for
ELU. If you have spare time and computing power, you can use cross-validation
or bootstrap to evaluate other activation functions.

A top-down perspective on Neural networks

The first thing we would like to do is divide the data into two or three parts. A
training set, a validation or dev (development) set, and a test set. The test set
is the data on which we want to make predictions. The dev set is a subset of the
training data we use to check how well we are doing out-of-sample, after training
the model on the training dataset. We use the validation error as a proxy for the
test error in order to make tweaks to our model. It is crucial that we do not use
any of the test data to train the algorithm. This is a cardinal sin in ML. Then:

e Estimate optimal error rate
e Minimize underfitting (bias) on training data set.

e Make sure you are not overfitting.

If the validation and test sets are drawn from the same distributions, then a good
performance on the validation set should lead to similarly good performance on
the test set.

However, sometimes the training data and test data differ in subtle ways
because, for example, they are collected using slightly different methods, or
because it is cheaper to collect data in one way versus another. In this case,
there can be a mismatch between the training and test data. This can lead to the
neural network overfitting these small differences between the test and training
sets, and a poor performance on the test set despite having a good performance
on the validation set. To rectify this, Andrew Ng suggests making two validation
or dev sets, one constructed from the training data and one constructed from
the test data. The difference between the performance of the algorithm on these
two validation sets quantifies the train-test mismatch. This can serve as another
important diagnostic when using DNNs for supervised learning.

41

Limitations of supervised learning with deep networks

Like all statistical methods, supervised learning using neural networks has
important limitations. This is especially important when one seeks to apply
these methods, especially to physics problems. Like all tools, DNNs are not
a universal solution. Often, the same or better performance on a task can be
achieved by using a few hand-engineered features (or even a collection of random
features).

Here we list some of the important limitations of supervised neural network
based models.

e Need labeled data. All supervised learning methods, DNNs for super-
vised learning require labeled data. Often, labeled data is harder to acquire
than unlabeled data (e.g. one must pay for human experts to label images).

e Supervised neural networks are extremely data intensive. DNNs
are data hungry. They perform best when data is plentiful. This is doubly
so for supervised methods where the data must also be labeled. The utility
of DNNs is extremely limited if data is hard to acquire or the datasets are
small (hundreds to a few thousand samples). In this case, the performance
of other methods that utilize hand-engineered features can exceed that of
DNNs.

e Homogeneous data. Almost all DNNs deal with homogeneous data of
one type. It is very hard to design architectures that mix and match data
types (i.e. some continuous variables, some discrete variables, some time
series). In applications beyond images, video, and language, this is often
what is required. In contrast, ensemble models like random forests or
gradient-boosted trees have no difficulty handling mixed data types.

e Many problems are not about prediction. In natural science we are
often interested in learning something about the underlying distribution
that generates the data. In this case, it is often difficult to cast these
ideas in a supervised learning setting. While the problems are related, it is
possible to make good predictions with a wrong model. The model might
or might not be useful for understanding the underlying science.

Some of these remarks are particular to DNNs, others are shared by all supervised
learning methods. This motivates the use of unsupervised methods which in
part circumvent these problems.

42

