
From Variational Monte Carlo to
Boltzmann Machines and Machine

Learning. Boltzmann Machines

Morten Hjorth-Jensen Email hjensen@msu.edu Department of
Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University, East Lansing, 48824 MI,

USA

May 23, 2019

Introduction
Why use a generative model rather than the more well known discriminative
deep neural networks (DNN)?

• Discriminitave methods have several limitations: They are mainly super-
vised learning methods, thus requiring labeled data. And there are tasks
they cannot accomplish, like drawing new examples from an unknown
probability distribution.

• A generative model can learn to represent and sample from a probability
distribution. The core idea is to learn a parametric model of the probability
distribution from which the training data was drawn. As an example

1. A model for images could learn to draw new examples of cats and
dogs, given a training dataset of images of cats and dogs.

2. Generate a sample of an ordered or disordered Ising model phase,
having been given samples of such phases.

3. Model the trial function for Monte Carlo calculations

• Both use gradient-descent based learning procedures for minimizing cost
functions

• Energy based models don’t use backpropagation and automatic differenti-
ation for computing gradients, instead turning to Markov Chain Monte
Carlo methods.

c© 1999-2019, Morten Hjorth-Jensen Email hjensen@msu.edu Department of Physics and
Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University,
East Lansing, 48824 MI, USA. Released under CC Attribution-NonCommercial 4.0 license

• DNNs often have several hidden layers. A restricted Boltzmann machine
has only one hidden layer, however several RBMs can be stacked to make
up Deep Belief Networks, of which they constitute the building blocks.

History: The RBM was developed by amongst others Geoffrey Hinton, called by
some the "Godfather of Deep Learning", working with the University of Toronto
and Google.

A BM is what we would call an undirected probabilistic graphical model with
stochastic continuous or discrete units.

It is interpreted as a stochastic recurrent neural network where the state of
each unit(neurons/nodes) depends on the units it is connected to. The weights
in the network represent thus the strength of the interaction between various
units/nodes.

It turns into a Hopfield network if we choose deterministic rather than stochas-
tic units. In contrast to a Hopfield network, a BM is a so-called generative model.
It allows us to generate new samples from the learned distribution.

A standard BM network is divided into a set of observable and visible units x̂
and a set of unknown hidden units/nodes ĥ.

Additionally there can be bias nodes for the hidden and visible layers. These
biases are normally set to 1.

BMs are stackable, meaning they cwe can train a BM which serves as input to
another BM. We can construct deep networks for learning complex PDFs. The
layers can be trained one after another, a feature which makes them popular in
deep learning

However, they are often hard to train. This leads to the introduction of
so-called restricted BMs, or RBMS. Here we take away all lateral connections
between nodes in the visible layer as well as connections between nodes in the
hidden layer. The network is illustrated in the figure below.

2

Hidden Layer

Visible Layer ai(vi)

bμ(hμ)

WiμvihμInteractions

The network
The network layers:

1. A function x that represents the visible layer, a vector of M elements
(nodes). This layer represents both what the RBM might be given as
training input, and what we want it to be able to reconstruct. This might
for example be the pixels of an image, the spin values of the Ising model,
or coefficients representing speech.

2. The function h represents the hidden, or latent, layer. A vector of N
elements (nodes). Also called "feature detectors".

The goal of the hidden layer is to increase the model’s expressive power. We
encode complex interactions between visible variables by introducing additional,
hidden variables that interact with visible degrees of freedom in a simple manner,
yet still reproduce the complex correlations between visible degrees in the data
once marginalized over (integrated out).

Examples of this trick being employed in physics:

1. The Hubbard-Stratonovich transformation

2. The introduction of ghost fields in gauge theory

3. Shadow wave functions in Quantum Monte Carlo simulations

The network parameters, to be optimized/learned:

1. a represents the visible bias, a vector of same length as x.

2. b represents the hidden bias, a vector of same lenght as h.

3. W represents the interaction weights, a matrix of size M ×N .

3

Joint distribution. The restricted Boltzmann machine is described by a
Bolztmann distribution

Prbm(x,h) = 1
Z
e−

1
T0
E(x,h), (1)

where Z is the normalization constant or partition function, defined as

Z =
∫ ∫

e−
1
T0
E(x,h)dxdh. (2)

It is common to ignore T0 by setting it to one.

Network Elements, the energy function. The function E(x,h) gives the
energy of a configuration (pair of vectors) (x,h). The lower the energy of a
configuration, the higher the probability of it. This function also depends on
the parameters a, b and W . Thus, when we adjust them during the learning
procedure, we are adjusting the energy function to best fit our problem.

An expression for the energy function is

E(x̂, ĥ) = −
NA∑
ia

bai α
a
i (xi)−

MD∑
jd

cdjβ
d
j (hj)−

NAMD∑
ijad

bai α
a
i (xi)cdjβdj (hj)wadij .

Here βdj (hj) and αai (xj) are so-called transfer functions that map a given
input value to a desired feature value. The labels a and d denote that there can
be multiple transfer functions per variable. The first sum depends only on the
visible units. The second on the hidden ones. Note that there is no connection
between nodes in a layer.

The quantities b and c can be interpreted as the visible and hidden biases,
respectively.

The connection between the nodes in the two layers is given by the weights
wij .

Defining different types of RBMs. There are different variants of RBMs,
and the differences lie in the types of visible and hidden units we choose as well
as in the implementation of the energy function E(x,h).

Binary-Binary RBM: RBMs were first developed using binary units in both
the visible and hidden layer. The corresponding energy function is defined as
follows:

E(x,h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑
i,j

xiwijhj , (3)

where the binary values taken on by the nodes are most commonly 0 and 1.

4

Gaussian-Binary RBM: Another varient is the RBM where the visible units
are Gaussian while the hidden units remain binary:

E(x,h) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑
i,j

xiwijhj
σ2
i

. (4)

1. RBMs are Useful when we model continuous data (i.e., we wish x to be
continuous)

2. Requires a smaller learning rate, since there’s no upper bound to the value
a component might take in the reconstruction

Other types of units include:

1. Softmax and multinomial units

2. Gaussian visible and hidden units

3. Binomial units

4. Rectified linear units

Cost function. When working with a training dataset, the most common
training approach is maximizing the log-likelihood of the training data. The
log likelihood characterizes the log-probability of generating the observed data
using our generative model. Using this method our cost function is chosen
as the negative log-likelihood. The learning then consists of trying to find
parameters that maximize the probability of the dataset, and is known as
Maximum Likelihood Estimation (MLE). Denoting the parameters as θ =
a1, ..., aM , b1, ..., bN , w11, ..., wMN , the log-likelihood is given by

L({θi}) = 〈logPθ(x)〉data (5)
= −〈E(x; {θi})〉data − logZ({θi}), (6)

where we used that the normalization constant does not depend on the data,
〈logZ({θi})〉 = logZ({θi}) Our cost function is the negative log-likelihood,
C({θi}) = −L({θi})

Optimization / Training. The training procedure of choice often is Stochas-
tic Gradient Descent (SGD). It consists of a series of iterations where we update
the parameters according to the equation

θk+1 = θk − η∇C(θk) (7)

at each k-th iteration. There are a range of variants of the algorithm which
aim at making the learning rate η more adaptive so the method might be more
efficient while remaining stable.

5

We now need the gradient of the cost function in order to minimize it. We
find that

∂C({θi})
∂θi

= 〈∂E(x; θi)
∂θi

〉data + ∂logZ({θi})
∂θi

(8)

= 〈Oi(x)〉data − 〈Oi(x)〉model, (9)

where in order to simplify notation we defined the "operator"

Oi(x) = ∂E(x; θi)
∂θi

, (10)

and used the statistical mechanics relationship between expectation values and
the log-partition function:

〈Oi(x)〉model = TrPθ(x)Oi(x) = −∂logZ({θi})
∂θi

. (11)

The data-dependent term in the gradient is known as the positive phase of
the gradient, while the model-dependent term is known as the negative phase of
the gradient. The aim of the training is to lower the energy of configurations
that are near observed data points (increasing their probability), and raising the
energy of configurations that are far from observed data points (decreasing their
probability).

The gradient of the negative log-likelihood cost function of a Binary-Binary
RBM is then

∂C(wij , ai, bj)
∂wij

=〈xihj〉data − 〈xihj〉model (12)

∂C(wij , ai, bj)
∂aij

=〈xi〉data − 〈xi〉model (13)

∂C(wij , ai, bj)
∂bij

=〈hi〉data − 〈hi〉model. (14)

(15)

To get the expectation values with respect to the data, we set the visible units
to each of the observed samples in the training data, then update the hidden
units according to the conditional probability found before. We then average
over all samples in the training data to calculate expectation values with respect
to the data.

Kullback-Leibler relative entropy. When the goal of the training is to
approximate a probability distribution, as it is in generative modeling, another
relevant measure is the Kullback-Leibler divergence, also known as the
relative entropy or Shannon entropy. It is a non-symmetric measure of the
dissimilarity between two probability density functions p and q. If p is the

6

unkown probability which we approximate with q, we can measure the difference
by

KL(p||q) =
∫ ∞
−∞

p(x) log p(x)
q(x)dx. (16)

Thus, the Kullback-Leibler divergence between the distribution of the training
data f(x) and the model distribution p(x|θ) is

KL(f(x)||p(x|θ)) =
∫ ∞
−∞

f(x) log f(x)
p(x|θ)dx (17)

=
∫ ∞
−∞

f(x) log f(x)dx−
∫ ∞
−∞

f(x) log p(x|θ)dx (18)

=〈log f(x)〉f(x) − 〈log p(x|θ)〉f(x) (19)
=〈log f(x)〉data + 〈E(x)〉data + logZ (20)
=〈log f(x)〉data + CLL. (21)

The first term is constant with respect to θ since f(x) is independent of
θ. Thus the Kullback-Leibler Divergence is minimal when the second term is
minimal. The second term is the log-likelihood cost function, hence minimizing
the Kullback-Leibler divergence is equivalent to maximizing the log-likelihood.

To further understand generative models it is useful to study the gradient
of the cost function which is needed in order to minimize it using methods like
stochastic gradient descent.

The partition function is the generating function of expectation values, in
particular there are mathematical relationships between expectation values and
the log-partition function. In this case we have

〈∂E(x; θi)
∂θi

〉model =
∫
p(x|θ)∂E(x; θi)

∂θi
dx = −∂ logZ(θi)

∂θi
. (22)

Here 〈·〉model is the expectation value over the model probability distribution
p(x|θ).

Setting up for gradient descent calculations
Using the previous relationship we can express the gradient of the cost function
as

∂CLL
∂θi

=〈∂E(x; θi)
∂θi

〉data + ∂ logZ(θi)
∂θi

(23)

=〈∂E(x; θi)
∂θi

〉data − 〈
∂E(x; θi)

∂θi
〉model (24)

(25)

7

This expression shows that the gradient of the log-likelihood cost function is a
difference of moments, with one calculated from the data and one calculated
from the model. The data-dependent term is called the positive phase and
the model-dependent term is called the negative phase of the gradient. We
see now that minimizing the cost function results in lowering the energy of
configurations x near points in the training data and increasing the energy of
configurations not observed in the training data. That means we increase the
model’s probability of configurations similar to those in the training data.

The gradient of the cost function also demonstrates why gradients of unsu-
pervised, generative models must be computed differently from for those of for
example FNNs. While the data-dependent expectation value is easily calculated
based on the samples xi in the training data, we must sample from the model in
order to generate samples from which to caclulate the model-dependent term.
We sample from the model by using MCMC-based methods. We can not sample
from the model directly because the partition function Z is generally intractable.

As in supervised machine learning problems, the goal is also here to perform
well on unseen data, that is to have good generalization from the training data.
The distribution f(x) we approximate is not the true distribution we wish to
estimate, it is limited to the training data. Hence, in unsupervised training as
well it is important to prevent overfitting to the training data. Thus it is common
to add regularizers to the cost function in the same manner as we discussed for
say linear regression.

RBMs for the quantum many body problem
The idea of applying RBMs to quantum many body problems was presented by
G. Carleo and M. Troyer, working with ETH Zurich and Microsoft Research.
There are several interesting articles that follow up the research presented by
Carleo and Troyer, see for example Saito’s work using neural networks.

Some of their motivation included

• The wave function Ψ is a monolithic mathematical quantity that contains
all the information on a quantum state, be it a single particle or a complex
molecule. In principle, an exponential amount of information is needed to
fully encode a generic many-body quantum state.

• There are still interesting open problems, including fundamental questions
ranging from the dynamical properties of high-dimensional systems to the
exact ground-state properties of strongly interacting fermions.

• The difficulty lies in finding a general strategy to reduce the exponential
complexity of the full many-body wave function down to its most essential
features. That is

1. Dimensional reduction
2. Feature extraction

8

https://journals.jps.jp/doi/full/10.7566/JPSJ.87.074002

• Among the most successful techniques to attack these challenges, artifical
neural networks play a prominent role.

• Want to understand whether an artifical neural network may adapt to
describe a quantum system.

Carleo and Troyer applied the RBM to the quantum mechanical spin lattice
systems of the Ising model and Heisenberg model, with encouraging results. Our
goal is to test the method on systems of moving particles. For the spin lattice
systems it was natural to use a binary-binary RBM, with the nodes taking values
of 1 and -1. For moving particles, on the other hand, we want the visible nodes
to be continuous, representing position coordinates. Thus, we start by choosing
a Gaussian-binary RBM, where the visible nodes are continuous and hidden
nodes take on values of 0 or 1. If eventually we would like the hidden nodes to
be continuous as well the rectified linear units seem like the most relevant choice.

Representing the wave function
The wavefunction should be a probability amplitude depending on x. The RBM
model is given by the joint distribution of x and h

Frbm(x,h) = 1
Z
e−

1
T0
E(x,h). (26)

To find the marginal distribution of x we set:

Frbm(x) =
∑

h

Frbm(x,h) (27)

= 1
Z

∑
h

e−E(x,h). (28)

Now this is what we use to represent the wave function, calling it a neural-
network quantum state (NQS)

Ψ(X) = Frbm(x) (29)

= 1
Z

∑
h

e−E(x,h) (30)

= 1
Z

∑
{hj}

e
−
∑M

i

(xi−ai)2

2σ2 +
∑N

j
bjhj+

∑
i,jM,N

xiwijhj

σ2 (31)

= 1
Z
e−
∑M

i

(xi−ai)2

2σ2

N∏
j

(1 + ebj+
∑M

i

x iwij

σ2). (32)

(33)

9

Choose the cost function
Now we don’t necessarily have training data (unless we generate it by using
some other method). However, what we do have is the variational principle
which allows us to obtain the ground state wave function by minimizing the
expectation value of the energy of a trial wavefunction (corresponding to the
untrained NQS). Similarly to the traditional variational Monte Carlo method
then, it is the local energy we wish to minimize. The gradient to use for the
stochastic gradient descent procedure is

Ci = ∂〈EL〉
∂θi

= 2(〈EL
1
Ψ
∂Ψ
∂θi
〉 − 〈EL〉〈

1
Ψ
∂Ψ
∂θi
〉), (34)

where the local energy is given by

EL = 1
ΨĤΨ. (35)

Mathematical details. Because we are restricted to potential functions which
are positive it is convenient to express them as exponentials, so that

φC(xC) = e−EC(xC) (36)

where E(xC) is called an energy function, and the exponential representation
is the Boltzmann distribution. The joint distribution is defined as the product of
potentials.

The joint distribution of the random variables is then

p(x) = 1
Z

∏
C

φC(xC)

= 1
Z

∏
C

e−EC(xC)

= 1
Z
e−
∑

C
EC(xC)

= 1
Z
e−E(x). (37)

pBM (x,h) = 1
ZBM

e−
1
T EBM (x,h), (38)

with the partition function

ZBM =
∫ ∫

e−
1
T EBM (x̃,h̃)dx̃dh̃. (39)

10

T is a physics-inspired parameter named temperature and will be assumed
to be 1 unless otherwise stated. The energy function of the Boltzmann machine
determines the interactions between the nodes and is defined

EBM (x,h) =−
M,K∑
i,k

aki α
k
i (xi)−

N,L∑
j,l

bljβ
l
j(hj)−

M,N,K,L∑
i,j,k,l

αki (xi)wklijβlj(hj)

−
M,M,K∑
i,m=i+1,k

αki (xi)vkimαkm(xm)−
N,N,L∑

j,n=j+1,l
βlj(hj)uljnβln(hn). (40)

Here αki (xi) and βlj(hj) are one-dimensional transfer functions or mappings
from the given input value to the desired feature value. They can be arbitrary
functions of the input variables and are independent of the parameterization
(parameters referring to weight and biases), meaning they are not affected by
training of the model. The indices k and l indicate that there can be multiple
transfer functions per variable. Furthermore, aki and blj are the visible and hidden
bias. wklij are weights of the inter-layer connection terms which connect visible
and hidden units. vkim and uljn are weights of the intra-layer connection terms
which connect the visible units to each other and the hidden units to each other,
respectively.

We remove the intra-layer connections by setting vim and ujn to zero. The
expression for the energy of the RBM is then

ERBM (x,h) = −
M,K∑
i,k

aki α
k
i (xi)−

N,L∑
j,l

bljβ
l
j(hj)−

M,N,K,L∑
i,j,k,l

αki (xi)wklijβlj(hj).

(41)

11

resulting in

PRBM (x) =
∫
PRBM (x, h̃)dh̃

= 1
ZRBM

∫
e−ERBM (x,h̃)dh̃

= 1
ZRBM

∫
e

∑
i,k

aki α
k
i (xi)+

∑
j,l
bljβ

l
j(h̃j)+

∑
i,j,k,l

αki (xi)wklijβ
l
j(h̃j)dh̃

= 1
ZRBM

e

∑
i,k

aki α
k
i (xi)

∫ N∏
j

e

∑
l
bljβ

l
j(h̃j)+

∑
i,k,l

αki (xi)wklijβ
l
j(h̃j)dh̃

= 1
ZRBM

e

∑
i,k

aki α
k
i (xi)

(∫
e

∑
l
bl1β

l
1(h̃1)+

∑
i,k,l

αki (xi)wkli1β
l
1(h̃1)

dh̃1

×
∫
e

∑
l
bl2β

l
2(h̃2)+

∑
i,k,l

αki (xi)wkli2β
l
2(h̃2)

dh̃2

× ...

×
∫
e

∑
l
blNβ

l
N (h̃N)+

∑
i,k,l

αki (xi)wkliNβ
l
N (h̃N)

dh̃N

)
= 1
ZRBM

e

∑
i,k

aki α
k
i (xi)

N∏
j

∫
e

∑
l
bljβ

l
j(h̃j)+

∑
i,k,l

αki (xi)wklijβ
l
j(h̃j)dh̃j

(42)

Similarly

PRBM (h) = 1
ZRBM

∫
e−ERBM (x̃,h)dx̃

= 1
ZRBM

e

∑
j,l
bljβ

l
j(hj)

M∏
i

∫
e

∑
k
aki α

k
i (x̃i)+

∑
j,k,l

αki (x̃i)wklijβ
l
j(hj)dx̃i

(43)

Using Bayes theorem

PRBM (h|x) =PRBM (x,h)
PRBM (x)

=
1

ZRBM
e

∑
i,k

aki α
k
i (xi)+

∑
j,l
bljβ

l
j(hj)+

∑
i,j,k,l

αki (xi)wklijβ
l
j(hj)

1
ZRBM

e

∑
i,k

ak
i
αk
i
(xi)∏N

j

∫
e

∑
l
bl
j
βl
j
(h̃j)+

∑
i,k,l

αk
i
(xi)wklijβ

l
j
(h̃j)dh̃j

=
N∏
j

e

∑
l
bljβ

l
j(hj)+

∑
i,k,l

αki (xi)wklijβ
l
j(hj)∫

e

∑
l
bl
j
βl
j
(h̃j)+

∑
i,k,l

αk
i
(xi)wklijβ

l
j
(h̃j)dh̃j

(44)

Similarly

12

PRBM (x|h) =PRBM (x,h)
PRBM (h)

=
M∏
i

e

∑
k
aki α

k
i (xi)+

∑
j,k,l

αki (xi)wklijβ
l
j(hj)∫

e

∑
k
ak
i
αk
i
(x̃i)+

∑
j,k,l

αk
i
(x̃i)wklijβ

l
j
(hj)dx̃i

(45)

The original RBM had binary visible and hidden nodes. They were showned
to be universal approximators of discrete distributions. It was also shown that
adding hidden units yields strictly improved modelling power. The common
choice of binary values are 0 and 1. However, in some physics applications, -1
and 1 might be a more natural choice. We will here use 0 and 1.

EBB(x,h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑
i,j

xiwijhj . (46)

pBB(x,h) = 1
ZBB

e

∑M

i
aixi+

∑N

j
bjhj+

∑M,N

ij
xiwijhj (47)

= 1
ZBB

ex
Ta+bTh+xTWh (48)

with the partition function

ZBB =
∑
x,h

ex
Ta+bTh+xTWh. (49)

Marginal Probability Density Functions. In order to find the probability
of any configuration of the visible units we derive the marginal probability density
function.

13

pBB(x) =
∑
h

pBB(x,h) (50)

= 1
ZBB

∑
h

ex
Ta+bTh+xTWh

= 1
ZBB

ex
Ta
∑
h

e

∑N

j
(bj+xTw∗j)hj

= 1
ZBB

ex
Ta
∑
h

N∏
j

e(bj+xTw∗j)hj

= 1
ZBB

ex
Ta

(∑
h1

e(b1+xTw∗1)h1 ×
∑
h2

e(b2+xTw∗2)h2×

...×
∑
h2

e(bN+xTw∗N)hN
)

= 1
ZBB

ex
Ta

N∏
j

∑
hj

e(bj+xTw∗j)hj

= 1
ZBB

ex
Ta

N∏
j

(1 + ebj+xTw∗j). (51)

A similar derivation yields the marginal probability of the hidden units

pBB(h) = 1
ZBB

eb
Th

M∏
i

(1 + eai+wT
i∗h). (52)

Conditional Probability Density Functions. We derive the probability of
the hidden units given the visible units using Bayes’ rule

14

pBB(h|x) =pBB(x,h)
pBB(x)

=
1

ZBB
ex

Ta+bTh+xTWh

1
ZBB

exTa
∏N
j (1 + ebj+xTw∗j)

= ex
Tae

∑N

j
(bj+xTw∗j)hj

exTa
∏N
j (1 + ebj+xTw∗j)

=
N∏
j

e(bj+xTw∗j)hj

1 + ebj+xTw∗j

=
N∏
j

pBB(hj |x). (53)

From this we find the probability of a hidden unit being "on" or "off":

pBB(hj = 1|x) = e(bj+xTw∗j)hj

1 + ebj+xTw∗j
(54)

= e(bj+xTw∗j)

1 + ebj+xTw∗j
(55)

= 1
1 + e−(bj+xTw∗j)

, (56)

and

pBB(hj = 0|x) = 1
1 + ebj+xTw∗j

. (57)

Similarly we have that the conditional probability of the visible units given
the hidden are

pBB(x|h) =
M∏
i

e(ai+wT
i∗h)xi

1 + eai+wT
i∗h

(58)

=
M∏
i

pBB(xi|h). (59)

pBB(xi = 1|h) = 1
1 + e−(ai+wT

i∗h) (60)

pBB(xi = 0|h) = 1
1 + eai+wT

i∗h
. (61)

15

Gaussian-Binary Restricted Boltzmann Machines. Inserting into the
expression for ERBM (x,h) in equation results in the energy

EGB(x,h) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑
ij

xiwijhj
σ2
i

=||x− a2σ ||2 − bTh− (x
σ2)TWh. (62)

Joint Probability Density Function.

pGB(x,h) = 1
ZGB

e−||
x−a

2σ ||
2+bTh+(x

σ2)TWh

= 1
ZGB

e
−
∑M

i

(xi−ai)2

2σ2
i

+
∑N

j
bjhj+

∑M,N

ij

xiwijhj

σ2
i

= 1
ZGB

M,N∏
ij

e
− (xi−ai)2

2σ2
i

+bjhj+
xiwijhj

σ2
i , (63)

with the partition function given by

ZGB =
∫ H̃∑

h̃

e−||
x̃−a

2σ ||
2+bT h̃+(x̃

σ2)TWh̃dx̃. (64)

Marginal Probability Density Functions. We proceed to find the marginal
probability densitites of the Gaussian-binary RBM. We first marginalize over
the binary hidden units to find pGB(x)

pGB(x) =
H̃∑
h̃

pGB(x, h̃)

= 1
ZGB

H̃∑
h̃

e−||
x−a

2σ ||
2+bT h̃+(x

σ2)TWh̃

= 1
ZGB

e−||
x−a

2σ ||
2
N∏
j

(1 + ebj+(x
σ2)Tw∗j). (65)

We next marginalize over the visible units. This is the first time we marginal-
ize over continuous values. We rewrite the exponential factor dependent on x as
a Gaussian function before we integrate in the last step.

16

pGB(h) =
∫
pGB(x̃,h)dx̃

= 1
ZGB

∫
e−||

x̃−a
2σ ||

2+bTh+(x̃
σ2)TWhdx̃

= 1
ZGB

eb
Th

∫ M∏
i

e
− (x̃i−ai)2

2σ2
i

+
x̃iw

T
i∗h

σ2
i dx̃

= 1
ZGB

eb
Th

(∫
e
− (x̃1−a1)2

2σ2
1

+
x̃1wT1∗h

σ2
1 dx̃1

×
∫
e
− (x̃2−a2)2

2σ2
2

+
x̃2wT2∗h

σ2
2 dx̃2

× ...

×
∫
e
− (x̃M−aM)2

2σ2
M

+
x̃Mw

T
M∗h

σ2
M dx̃M

)
= 1
ZGB

eb
Th

M∏
i

∫
e
−

(x̃i−ai)2−2x̃iw
T
i∗h

2σ2
i dx̃i

= 1
ZGB

eb
Th

M∏
i

∫
e
−
x̃2
i

−2x̃i(ai+x̃iw
T
i∗h)+a2

i
2σ2
i dx̃i

= 1
ZGB

eb
Th

M∏
i

∫
e
−
x̃2
i

−2x̃i(ai+wT
i∗h)+(ai+wT

i∗h)2−(ai+wT
i∗h)2+a2

i
2σ2
i dx̃i

= 1
ZGB

eb
Th

M∏
i

∫
e
−

(x̃i−(ai+wT
i∗h))2−a2

i
−2aiw

T
i∗h−(wT

i∗h)2+a2
i

2σ2
i dx̃i

= 1
ZGB

eb
Th

M∏
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

∫
e
−

(x̃i−ai−wT
i∗h)2

2σ2
i dx̃i

= 1
ZGB

eb
Th

M∏
i

√
2πσ2

i e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i . (66)

17

Conditional Probability Density Functions. We finish by deriving the
conditional probabilities.

pGB(h|x) =pGB(x,h)
pGB(x)

=
1

ZGB
e−||

x−a
2σ ||

2+bTh+(x
σ2)TWh

1
ZGB

e−||
x−a

2σ ||2
∏N
j (1 + ebj+(x

σ2)Tw∗j)

=
N∏
j

e(bj+(x
σ2)Tw∗j)hj

1 + ebj+(x
σ2)Tw∗j

=
N∏
j

pGB(hj |x). (67)

The conditional probability of a binary hidden unit hj being on or off again
takes the form of a sigmoid function

pGB(hj = 1|x) = ebj+(x
σ2)Tw∗j

1 + ebj+(x
σ2)Tw∗j

= 1
1 + e−bj−(x

σ2)Tw∗j
(68)

pGB(hj = 0|x) = 1
1 + ebj+(x

σ2)Tw∗j
. (69)

The conditional probability of the continuous x now has another form,
however.

18

pGB(x|h) =pGB(x,h)
pGB(h)

=
1

ZGB
e−||

x−a
2σ ||

2+bTh+(x
σ2)TWh

1
ZGB

ebTh
∏M
i

√
2πσ2

i e

2aiwTi∗h+(wT
i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
− (xi−ai)2

2σ2
i

+
xiw

T
i∗h

2σ2
i

e

2aiwTi∗h+(wT
i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−
x2
i

−2aixi+a2
i

−2xiw
T
i∗h

2σ2
i

e

2aiwTi∗h+(wT
i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−
x2
i

−2aixi+a2
i

−2xiw
T
i∗h+2aiw

T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

(xi−bi−wT
i∗h)2

2σ2
i

=
M∏
i

N (xi|bi +wT
i∗h, σ

2
i) (70)

⇒ pGB(xi|h) =N (xi|bi +wT
i∗h, σ

2
i). (71)

The form of these conditional probabilities explains the name "Gaussian" and
the form of the Gaussian-binary energy function. We see that the conditional
probability of xi given h is a normal distribution with mean bi + wT

i∗h and
variance σ2

i .

Neural Quantum States
The wavefunction should be a probability amplitude depending on x. The RBM
model is given by the joint distribution of x and h

Frbm(x,h) = 1
Z
e−

1
T0
E(x,h) (72)

To find the marginal distribution of x we set:

Frbm(x) =
∑

h

Frbm(x,h) (73)

= 1
Z

∑
h

e−E(x,h) (74)

19

Now this is what we use to represent the wave function, calling it a neural-
network quantum state (NQS)

Ψ(X) = Frbm(x) (75)

= 1
Z

∑
h

e−E(x,h) (76)

= 1
Z

∑
{hj}

e
−
∑M

i

(xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

xiwijhj

σ2 (77)

= 1
Z
e−
∑M

i

(xi−ai)2

2σ2

N∏
j

(1 + ebj+
∑M

i

xiwij

σ2) (78)

(79)

The above wavefunction is the most general one because it allows for complex
valued wavefunctions. However it fundamentally changes the probabilistic foun-
dation of the RBM, because what is usually a probability in the RBM framework
is now a an amplitude. This means that a lot of the theoretical framework usually
used to interpret the model, i.e. graphical models, conditional probabilities, and
Markov random fields, breaks down. If we assume the wavefunction to be postive
definite, however, we can use the RBM to represent the squared wavefunction,
and thereby a probability. This also makes it possible to sample from the model
using Gibbs sampling, because we can obtain the conditional probabilities.

20

|Ψ(X)|2 = Frbm(X) (80)

⇒ Ψ(X) =
√
Frbm(X) (81)

= 1√
Z

√∑
{hj}

e−E(X,h) (82)

= 1√
Z

√√√√∑
{hj}

e
−
∑M

i

(Xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

Xiwijhj

σ2 (83)

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

√√√√∑
{hj}

N∏
j

ebjhj+
∑M

i

Xiwijhj

σ2 (84)

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

√√√√ N∏
j

∑
hj

ebjhj+
∑M

i

Xiwijhj

σ2 (85)

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
e0 + ebj+

∑M

i

Xiwij

σ2 (86)

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
1 + ebj+

∑M

i

Xiwij

σ2 (87)

(88)

Cost function. This is where we deviate from what is common in machine
learning. Rather than defining a cost function based on some dataset, our cost
function is the energy of the quantum mechanical system. From the variational
principle we know that minizing this energy should lead to the ground state
wavefunction. As stated previously the local energy is given by

EL = 1
ΨĤΨ, (89)

and the gradient is

Gi = ∂〈EL〉
∂αi

= 2(〈EL
1
Ψ
∂Ψ
∂αi
〉 − 〈EL〉〈

1
Ψ
∂Ψ
∂αi
〉), (90)

where αi = a1, ..., aM , b1, ..., bN , w11, ..., wMN .
We use that 1

Ψ
∂Ψ
∂αi

= ∂ ln Ψ
∂αi

, and find

ln Ψ(X) = − lnZ −
M∑
m

(Xm − am)2

2σ2 +
N∑
n

ln(1 + ebn+
∑M

i

Xiwin
σ2). (91)

21

This gives

∂

∂am
ln Ψ = 1

σ2 (Xm − am) (92)

∂

∂bn
ln Ψ = 1

e−bn−
1
σ2

∑M

i
Xiwin + 1

(93)

∂

∂wmn
ln Ψ = Xm

σ2(e−bn−
1
σ2

∑M

i
Xiwin + 1)

. (94)

If Ψ =
√
Frbm we have

ln Ψ(X) = −1
2 lnZ −

M∑
m

(Xm − am)2

4σ2 + 1
2

N∑
n

ln(1 + ebn+
∑M

i

Xiwin
σ2), (95)

which results in

∂

∂am
ln Ψ = 1

2σ2 (Xm − am) (96)

∂

∂bn
ln Ψ = 1

2(e−bn−
1
σ2

∑M

i
Xiwin + 1)

(97)

∂

∂wmn
ln Ψ = Xm

2σ2(e−bn−
1
σ2

∑M

i
Xiwin + 1)

. (98)

Let us assume again that our Hamiltonian is

Ĥ =
P∑
p

(−1
2∇

2
p + 1

2ω
2r2
p) +

∑
p<q

1
rpq

, (99)

where the first summation term represents the standard harmonic oscillator
part and the latter the repulsive interaction between two electrons. Natural
units (~ = c = e = me = 1) are used, and P is the number of particles. This
gives us the following expression for the local energy (D being the number of
dimensions)

22

EL = 1
ΨHΨ (100)

= 1
Ψ(

P∑
p

(−1
2∇

2
p + 1

2ω
2r2
p) +

∑
p<q

1
rpq

)Ψ (101)

= −1
2

1
Ψ

P∑
p

∇2
pΨ + 1

2ω
2
P∑
p

r2
p +

∑
p<q

1
rpq

(102)

= −1
2

1
Ψ

P∑
p

D∑
d

∂2Ψ
∂x2

pd

+ 1
2ω

2
P∑
p

r2
p +

∑
p<q

1
rpq

(103)

= 1
2

P∑
p

D∑
d

(−(∂

∂xpd
ln Ψ)2 − ∂2

∂x2
pd

ln Ψ + ω2x2
pd) +

∑
p<q

1
rpq

. (104)

(105)

Letting each visible node in the Boltzmann machine represent one coordinate
of one particle, we obtain

EL = 1
2

M∑
m

(−(∂

∂vm
ln Ψ)2 − ∂2

∂v2
m

ln Ψ + ω2v2
m) +

∑
p<q

1
rpq

, (106)

where we have that

∂

∂xm
ln Ψ = − 1

σ2 (xm − am) + 1
σ2

N∑
n

wmn

e−bn−
1
σ2

∑M

i
xiwin + 1

(107)

∂2

∂x2
m

ln Ψ = − 1
σ2 + 1

σ4

N∑
n

ω2
mn

ebn+ 1
σ2

∑M

i
xiwin

(ebn+ 1
σ2

∑M

i
xiwin + 1)2

. (108)

We now have all the expressions neeeded to calculate the gradient of the
expected local energy with respect to the RBM parameters ∂〈EL〉

∂αi
.

If we use Ψ =
√
Frbm we obtain

∂

∂xm
ln Ψ = − 1

2σ2 (xm − am) + 1
2σ2

N∑
n

wmn

e−bn−
1
σ2

∑M

i
xiwin + 1

(109)

∂2

∂x2
m

ln Ψ = − 1
2σ2 + 1

2σ4

N∑
n

ω2
mn

ebn+ 1
σ2

∑M

i
xiwin

(ebn+ 1
σ2

∑M

i
xiwin + 1)2

. (110)

The difference between this equation and the previous one is that we multiply
by a factor 1/2.

23

Running the codes
You can find the codes for the simple two-electron case at the Github repository
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/
doc/Programs/BoltzmannMachines/MLcpp/src/CppCode/ob. Only c++ as of
now. Python codes to come.

0 20 40 60 80 100 120 140 160
Iteration

3.0

3.2

3.4

3.6

3.8

E 0
[a

.u
]

HF Energy
VMC Energy

80 90 100 110 120
3.0

3.1

24

https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/BoltzmannMachines/MLcpp/src/CppCode/ob
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/BoltzmannMachines/MLcpp/src/CppCode/ob

Energy as function of iterations, N = 2 electrons =====.

25

