xxxxxxxxxx
#Program which solves the one-particle Schrodinger equation
#for a potential specified in function
#potential(). This example is for the harmonic oscillator in 3d
from matplotlib import pyplot as plt
import numpy as np
#Function for initialization of parameters
def initialize():
RMin = 0.0
RMax = 10.0
lOrbital = 0
Dim = 400
return RMin, RMax, lOrbital, Dim
# Here we set up the harmonic oscillator potential
def potential(r):
return r*r
#Get the boundary, orbital momentum and number of integration points
RMin, RMax, lOrbital, Dim = initialize()
#Initialize constants
Step = RMax/(Dim+1)
DiagConst = 2.0 / (Step*Step)
NondiagConst = -1.0 / (Step*Step)
OrbitalFactor = lOrbital * (lOrbital + 1.0)
#Calculate array of potential values
v = np.zeros(Dim)
r = np.linspace(RMin,RMax,Dim)
for i in xrange(Dim):
r[i] = RMin + (i+1) * Step;
v[i] = potential(r[i]) + OrbitalFactor/(r[i]*r[i]);
#Setting up a tridiagonal matrix and finding eigenvectors and eigenvalues
Hamiltonian = np.zeros((Dim,Dim))
Hamiltonian[0,0] = DiagConst + v[0];
Hamiltonian[0,1] = NondiagConst;
for i in xrange(1,Dim-1):
Hamiltonian[i,i-1] = NondiagConst;
Hamiltonian[i,i] = DiagConst + v[i];
Hamiltonian[i,i+1] = NondiagConst;
Hamiltonian[Dim-1,Dim-2] = NondiagConst;
Hamiltonian[Dim-1,Dim-1] = DiagConst + v[Dim-1];
# diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(Hamiltonian)
# sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
# now plot the results for the three lowest lying eigenstates
for i in xrange(3):
print EigValues[i]
FirstEigvector = EigVectors[:,0]
SecondEigvector = EigVectors[:,1]
ThirdEigvector = EigVectors[:,2]
plt.plot(r, FirstEigvector**2 ,'b-',r, SecondEigvector**2 ,'g-',r, ThirdEigvector**2 ,'r-')
plt.axis([0,4.6,0.0, 0.025])
plt.xlabel(r'$r$')
plt.ylabel(r'Radial probability $r^2|R(r)|^2$')
plt.title(r'Radial probability distributions for three lowest-lying states')
plt.savefig('eigenvector.pdf')
plt.show()