Importance sampling

Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

$$ \frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. $$

Therefore,

$$ \frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = \sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} -\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, $$

where

$$ \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 $$

is the relative distance.