Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Importance sampling, Fokker-Planck and Langevin equations

We can then rewrite the ESKC equation as

\frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ \sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} \left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right].

We have neglected higher powers of \tau and have used that for n=0 we get simply W(\mathbf{x},s|\mathbf{x}_0) due to normalization.