Random forests provide an improvement over bagged trees by way of a small tweak that decorrelates the trees.
As in bagging, we build a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of \( m \) predictors is chosen as split candidates from the full set of \( p \) predictors. The split is allowed to use only one of those \( m \) predictors.
A fresh sample of \( m \) predictors is taken at each split, and typically we choose $$ m\approx \sqrt{p}. $$ In building a random forest, at each split in the tree, the algorithm is not even allowed to consider a majority of the available predictors.
The reason for this is rather clever. Suppose that there is one very strong predictor in the data set, along with a number of other moderately strong predictors. Then in the collection of bagged variable importance random forest trees, most or all of the trees will use this strong predictor in the top split. Consequently, all of the bagged trees will look quite similar to each other. Hence the predictions from the bagged trees will be highly correlated. Unfortunately, averaging many highly correlated quantities does not lead to as large of a reduction in variance as averaging many uncorrelated quanti- ties. In particular, this means that bagging will not lead to a substantial reduction in variance over a single tree in this setting.