We have that the ratio between Jastrow factors \( R_C \) is given by
$$ R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = \prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} \prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. $$For the Pade-Jastrow form
$$ R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = \frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, $$where
$$ \Delta U = \sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) + \sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) $$