We can compute the residual iteratively as
$$ \begin{equation*} \hat{r}_{k+1}=\hat{b}-\hat{A}\hat{x}_{k+1}, \end{equation*} $$which equals
$$ \begin{equation*} \hat{b}-\hat{A}(\hat{x}_k+\alpha_k\hat{r}_k), \end{equation*} $$or
$$ \begin{equation*} (\hat{b}-\hat{A}\hat{x}_k)-\alpha_k\hat{A}\hat{r}_k, \end{equation*} $$which gives
$$ \alpha_k = \frac{\hat{r}_k^T\hat{r}_k}{\hat{r}_k^T\hat{A}\hat{r}_k} $$leading to the iterative scheme
$$ \begin{equation*} \hat{x}_{k+1}=\hat{x}_k-\alpha_k\hat{r}_{k}, \end{equation*} $$