Mathematical model

We can generalize this expression to an MLP with \( l \) hidden layers. The complete functional form is, $$ \begin{align} &y^{l+1}_i = f^{l+1}\left[\!\sum_{j=1}^{N_l} w_{ij}^3 f^l\left(\sum_{k=1}^{N_{l-1}}w_{jk}^{l-1}\left(\dots f^1\left(\sum_{n=1}^{N_0} w_{mn}^1 x_n+ b_m^1\right)\dots\right)+b_k^2\right)+b_1^3\right] && \tag{9} \end{align} $$

which illustrates a basic property of MLPs: The only independent variables are the input values \( x_n \).