The correlation length for a finite lattice size can then be shown to be proportional to \begin{equation*} \xi(T) \propto L\sim \left|T_C-T\right|^{-\nu}. \end{equation*} and if we set T=T_C one can obtain the following relations for the magnetization, energy and susceptibility for T \le T_C \begin{equation*} \langle {\cal M}(T) \rangle \sim \left(T-T_C\right)^{\beta} \propto L^{-\beta/\nu}, \end{equation*} \begin{equation*} C_V(T) \sim \left|T_C-T\right|^{-\gamma} \propto L^{\alpha/\nu}, \end{equation*} and \begin{equation*} \chi(T) \sim \left|T_C-T\right|^{-\alpha} \propto L^{\gamma/\nu}. \end{equation*}