Splitting the Slater determinant

We want to avoid to sum over spin variables, in particular when the interaction does not depend on spin.

It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum Chem. 20 1107 (1981), that for the variational energy we can approximate the Slater determinant as

$$ \Phi(\mathbf{r}_1,\mathbf{r}_2,,\mathbf{r}_3,\mathbf{r}_4, \alpha,\beta,\gamma,\delta) \propto \det\uparrow(1,2)\det\downarrow(3,4), $$

or more generally as

$$ \Phi(\mathbf{r}_1,\mathbf{r}_2,\dots \mathbf{r}_N) \propto \det\uparrow \det\downarrow, $$

where we have the Slater determinant as the product of a spin up part involving the number of electrons with spin up only (2 for beryllium and 5 for neon) and a spin down part involving the electrons with spin down.