The Slater determinant, example

The Slater determinant for atomic Beryllium could for example take the form

$$ \Phi(\mathbf{r}_1,\mathbf{r}_2,,\mathbf{r}_3,\mathbf{r}_4, \alpha,\beta,\gamma,\delta)=\frac{1}{\sqrt{4!}} \left| \begin{array}{cccc} \psi_{100\uparrow}(\mathbf{r}_1)& \psi_{100\uparrow}(\mathbf{r}_2)& \psi_{100\uparrow}(\mathbf{r}_3)&\psi_{100\uparrow}(\mathbf{r}_4) \\ \psi_{100\downarrow}(\mathbf{r}_1)& \psi_{100\downarrow}(\mathbf{r}_2)& \psi_{100\downarrow}(\mathbf{r}_3)&\psi_{100\downarrow}(\mathbf{r}_4) \\ \psi_{200\uparrow}(\mathbf{r}_1)& \psi_{200\uparrow}(\mathbf{r}_2)& \psi_{200\uparrow}(\mathbf{r}_3)&\psi_{200\uparrow}(\mathbf{r}_4) \\ \psi_{200\downarrow}(\mathbf{r}_1)& \psi_{200\downarrow}(\mathbf{r}_2)& \psi_{200\downarrow}(\mathbf{r}_3)&\psi_{200\downarrow}(\mathbf{r}_4) \end{array} \right|. $$

This expression can lead to problems when we omit the spin degrees of freedom, as is common in for example many atomic physics calculations. Leaving out the spin degrees of freedom, the problem we may encounter is that of zero determinants. But we can rewrite it as the product of two Slater determinants, one for spin up and one for spin down.