Let us now assume that we have three PDFs for times t_0 < t' < t , that is w(\mathbf{x}_0,t_0) , w(\mathbf{x}',t') and w(\mathbf{x},t) . We have then
w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}',and
w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0,and
w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0.