The elements of the gradient of the local energy are then (using the chain rule and the hermiticity of the Hamiltonian)
$$ \bar{E}_{\alpha} = 2\left( \langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]}E_L[\alpha]\rangle -\langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]}\rangle\langle E_L[\alpha] \rangle\right). $$From a computational point of view it means that you need to compute the expectation values of
$$ \langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]}E_L[\alpha]\rangle, $$and
$$ \langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]}\rangle\langle E_L[\alpha]\rangle $$