Within a binary classification problem, we can easily expand our model to include multiple predictors. Our ratio between likelihoods is then with \( p \) predictors
$$ \log{ \frac{p(\boldsymbol{\beta}\boldsymbol{x})}{1-p(\boldsymbol{\beta}\boldsymbol{x})}} = \beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p. $$Here we defined \( \boldsymbol{x}=[1,x_1,x_2,\dots,x_p] \) and \( \boldsymbol{\beta}=[\beta_0, \beta_1, \dots, \beta_p] \) leading to
$$ p(\boldsymbol{\beta}\boldsymbol{x})=\frac{ \exp{(\beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p)}}{1+\exp{(\beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p)}}. $$