Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Extending to more predictors

Within a binary classification problem, we can easily expand our model to include multiple predictors. Our ratio between likelihoods is then with p predictors

\log{ \frac{p(\boldsymbol{\beta}\boldsymbol{x})}{1-p(\boldsymbol{\beta}\boldsymbol{x})}} = \beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p.

Here we defined \boldsymbol{x}=[1,x_1,x_2,\dots,x_p] and \boldsymbol{\beta}=[\beta_0, \beta_1, \dots, \beta_p] leading to

p(\boldsymbol{\beta}\boldsymbol{x})=\frac{ \exp{(\beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p)}}{1+\exp{(\beta_0+\beta_1x_1+\beta_2x_2+\dots+\beta_px_p)}}.