Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Quantum Monte Carlo Motivation

  • Construct first a trial wave function \psi_T(\boldsymbol{R},\boldsymbol{\alpha}) , for a many-body system consisting of N particles located at positions
\boldsymbol{R}=(\boldsymbol{R}_1,\dots ,\boldsymbol{R}_N) . The trial wave function depends on \alpha variational parameters \boldsymbol{\alpha}=(\alpha_1,\dots ,\alpha_M) .
  • Then we evaluate the expectation value of the hamiltonian H
E[H]=\langle H \rangle = \frac{\int d\boldsymbol{R}\Psi^{\ast}_{T}(\boldsymbol{R},\boldsymbol{\alpha})H(\boldsymbol{R})\Psi_{T}(\boldsymbol{R},\boldsymbol{\alpha})} {\int d\boldsymbol{R}\Psi^{\ast}_{T}(\boldsymbol{R},\boldsymbol{\alpha})\Psi_{T}(\boldsymbol{R},\boldsymbol{\alpha})}.
  • Thereafter we vary \alpha according to some minimization algorithm and return to the first step.