The dynamical equation for {\cal P}_i^{(n)} can be written directly from the description above. The probability of being in the state i at step n is given by the probability of being in any state j at the previous step, and making an accepted transition to i added to the probability of being in the state i , making a transition to any state j and rejecting the move: {\cal P}^{(n)}_i = \sum_j \left [ {\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} +{\cal P}^{(n-1)}_iT_{i\rightarrow j}\left ( 1- A_{i\rightarrow j} \right) \right ] \,. Since the probability of making some transition must be 1, \sum_j T_{i\rightarrow j} = 1 , and the above equation becomes {\cal P}^{(n)}_i = {\cal P}^{(n-1)}_i + \sum_j \left [ {\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} -{\cal P}^{(n-1)}_iT_{i\rightarrow j}A_{i\rightarrow j} \right ] \,.