Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Quantum Monte Carlo: the helium atom

This results in \frac{1}{{\cal R}_T(r_1)}\frac{d {\cal R}_T(r_1)}{dr_1}=-Z, and {\cal R}_T(r_1)\propto e^{-Zr_1}. A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have \frac{1}{{\cal R}_T(r)}\frac{d {\cal R}_T(r)}{dr}=-\frac{Z}{l+1}. Similarly, studying the case r_{12}\rightarrow 0 we can write a possible trial wave function as \psi_T(\boldsymbol{R})=e^{-\alpha(r_1+r_2)}e^{\beta r_{12}}. \tag{5} The last equation can be generalized to \psi_T(\boldsymbol{R})=\phi(\boldsymbol{r}_1)\phi(\boldsymbol{r}_2)\dots\phi(\boldsymbol{r}_N) \prod_{i < j}f(r_{ij}), for a system with N electrons or particles.