We start with the variational principle. Given a hamiltonian H and a trial wave function \Psi_T(\boldsymbol{R};\boldsymbol{\alpha}) , the variational principle states that the expectation value of \cal{E}[H] , defined through
\cal {E}[H] = \frac{\int d\boldsymbol{R}\Psi^{\ast}_T(\boldsymbol{R};\boldsymbol{\alpha})H(\boldsymbol{R})\Psi_T(\boldsymbol{R};\boldsymbol{\alpha})} {\int d\boldsymbol{R}\Psi^{\ast}_T(\boldsymbol{R};\boldsymbol{\alpha})\Psi_T(\boldsymbol{R};\boldsymbol{\alpha})},is an upper bound to the ground state energy E_0 of the hamiltonian H , that is
E_0 \le {\cal E}[H].