First code attempt for the two-electron case

First, as with the hydrogen case, we declare where to store files.

# Common imports
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCQdotMetropolis"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)

def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
    plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCQdotMetropolis.dat"),'w')

Thereafter we set up the analytical expressions for the wave functions and the local energy

# 2-electron VMC for quantum dot system in two dimensions
# Brute force Metropolis, no importance sampling and no energy minimization
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys


# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):
    r1 = r[0,0]**2 + r[0,1]**2
    r2 = r[1,0]**2 + r[1,1]**2
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = r12/(1+beta*r12)
    return exp(-0.5*alpha*(r1+r2)+deno)

# Local energy  for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):
    
    r1 = (r[0,0]**2 + r[0,1]**2)
    r2 = (r[1,0]**2 + r[1,1]**2)
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = 1.0/(1+beta*r12)
    deno2 = deno*deno
    return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

The Monte Carlo sampling without importance sampling is set up here.

# The Monte Carlo sampling with the Metropolis algo
def MonteCarloSampling():

    NumberMCcycles= 10000
    StepSize = 1.0
    # positions
    PositionOld = np.zeros((NumberParticles,Dimension), np.double)
    PositionNew = np.zeros((NumberParticles,Dimension), np.double)

    # seed for rng generator
    seed()
    # start variational parameter
    alpha = 0.9
    for ia in range(MaxVariations):
        alpha += .025
        AlphaValues[ia] = alpha
        beta = 0.2 
        for jb in range(MaxVariations):
            beta += .01
            BetaValues[jb] = beta
            energy = energy2 = 0.0
            DeltaE = 0.0
            #Initial position
            for i in range(NumberParticles):
                for j in range(Dimension):
                    PositionOld[i,j] = StepSize * (random() - .5)
            wfold = WaveFunction(PositionOld,alpha,beta)

            #Loop over MC MCcycles
            for MCcycle in range(NumberMCcycles):
                #Trial position moving one particle at the time
                for i in range(NumberParticles):
                    for j in range(Dimension):
                        PositionNew[i,j] = PositionOld[i,j] + StepSize * (random() - .5)
                    wfnew = WaveFunction(PositionNew,alpha,beta)

                    #Metropolis test to see whether we accept the move
                    if random() < wfnew**2 / wfold**2:
                       for j in range(Dimension):
                           PositionOld[i,j] = PositionNew[i,j]
                       wfold = wfnew
                DeltaE = LocalEnergy(PositionOld,alpha,beta)
                energy += DeltaE
                energy2 += DeltaE**2
            #We calculate mean, variance and error ...
            energy /= NumberMCcycles
            energy2 /= NumberMCcycles
            variance = energy2 - energy**2
            error = sqrt(variance/NumberMCcycles)
            Energies[ia,jb] = energy    
            Variances[ia,jb] = variance    
            outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error))
    return Energies, Variances, AlphaValues, BetaValues

And finally comes the main part with the plots as well.

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
MaxVariations = 10
Energies = np.zeros((MaxVariations,MaxVariations))
Variances = np.zeros((MaxVariations,MaxVariations))
AlphaValues = np.zeros(MaxVariations)
BetaValues = np.zeros(MaxVariations)
(Energies, Variances, AlphaValues, BetaValues) = MonteCarloSampling()
outfile.close()

# Prepare for plots
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot the surface.
X, Y = np.meshgrid(AlphaValues, BetaValues)
surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
# Customize the z axis.
zmin = np.matrix(Energies).min()
zmax = np.matrix(Energies).max()
ax.set_zlim(zmin, zmax)
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$\beta$')
ax.set_zlabel(r'$\langle E \rangle$')
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
save_fig("QdotMetropolis")
plt.show()