Mathematical setup

The expression for the simplest Recurrent network resembles that of a regular feed-forward neural network, but now with the concept of temporal dependencies

$$ \begin{align*} \mathbf{a}^{(t)} & = U * \mathbf{x}^{(t)} + W * \mathbf{h}^{(t-1)} + \mathbf{b}, \notag \\ \mathbf{h}^{(t)} &= \sigma_h(\mathbf{a}^{(t)}), \notag\\ \mathbf{y}^{(t)} &= V * \mathbf{h}^{(t)} + \mathbf{c}, \notag\\ \mathbf{\hat{y}}^{(t)} &= \sigma_y(\mathbf{y}^{(t)}). \end{align*} $$