We can rewrite these two equations F_{x}=-\frac{GM_{\odot}M_E}{r^2}\cos{(\theta)}=-\frac{GM_{\odot}M_E}{r^3}x, and F_{y}=-\frac{GM_{\odot}M_E}{r^2}\sin{(\theta)}=-\frac{GM_{\odot}M_E}{r^3}y, as four first-order coupled differential equations \frac{dv_x}{dt}=-\frac{GM_{\odot}}{r^3}x, \frac{dx}{dt}=v_x, \frac{dv_y}{dt}=-\frac{GM_{\odot}}{r^3}y, \frac{dy}{dt}=v_y.