Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Building a code for the solar system, final coupled equations

The four coupled differential equations \frac{dv_x}{dt}=-\frac{GM_{\odot}}{r^3}x, \frac{dx}{dt}=v_x, \frac{dv_y}{dt}=-\frac{GM_{\odot}}{r^3}y, \frac{dy}{dt}=v_y, can be turned into dimensionless equations (as we did in project 2) or we can introduce astronomical units with 1 AU = 1.5\times 10^{11} .

Using the equations from circular motion (with r =1\mathrm{AU} ) \frac{M_E v^2}{r} = F = \frac{GM_{\odot}M_E}{r^2}, we have GM_{\odot}=v^2r, and using that the velocity of Earth (assuming circular motion) is v = 2\pi r/\mathrm{yr}=2\pi\mathrm{AU}/\mathrm{yr} , we have GM_{\odot}= v^2r = 4\pi^2 \frac{(\mathrm{AU})^3}{\mathrm{yr}^2}.