Discussion of Slater determinants and project 2
Contents
Overview of week April 15-19
Project 2, VMC for fermions: Efficient calculation of Slater determinants
Matrix elements of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
Efficient calculation of Slater determinants
The gradient and the Laplacian
How to compute the derivates of the Slater determinant
The Slater determinant, example
Rewriting the Slater determinant
Splitting the Slater determinant
Not respecting the symmetry
Omitting or not omitting spin degrees of freedom
Restricted versus unrestricted
Spin up and spin down parts
Factorization
Number of operations
Counting the number of FLOPS
Computation of ratios
Scaling properties
How to get the determinant
Expectation value of the kinetic energy
Second derivative of the Jastrow factor
Functional form
Second derivative of the Jastrow factor
Gradient and Laplacian
The gradient for the determinant
Jastrow gradient in quantum force
Metropolis Hastings part
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Proof for updating algorithm for Slater determinant
Computing the inverse of the transposed matrix we arrive at
$$ \begin{equation} \tag{14} d_{kj}(\mathbf{x^{new}})^{-1} = [d_{kj}(\mathbf{x^{old}}) + \Delta_{kj}]^{-1}. \end{equation} $$
«
1
...
31
32
33
34
35
36
37
38
39
40
41
42
43
44
»