Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Extending to more than one variable

Newton's method can be generalized to systems of several non-linear equations and variables. Consider the case with two equations

\begin{array}{cc} f_1(x_1,x_2) &=0\\ f_2(x_1,x_2) &=0,\end{array}

which we Taylor expand to obtain

\begin{array}{cc} 0=f_1(x_1+h_1,x_2+h_2)=&f_1(x_1,x_2)+h_1 \partial f_1/\partial x_1+h_2 \partial f_1/\partial x_2+\dots\\ 0=f_2(x_1+h_1,x_2+h_2)=&f_2(x_1,x_2)+h_1 \partial f_2/\partial x_1+h_2 \partial f_2/\partial x_2+\dots \end{array}.