Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Just a short reminder of Newton’s Method

Newton’s method iteratively updates the solution as:

\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}_k^{-1} \mathbf{F}(\mathbf{x}_k),

where \mathbf{J}_k = \mathbf{J}(\mathbf{x}_k) is the Jacobian matrix of \mathbf{F} evaluated at \mathbf{x}_k . However, computing \mathbf{J}_k and its inverse at each iteration can be computationally expensive.