Assume that \( f \) is twice differentiable, i.e the Hessian matrix exists at each point in \( D_f \). Then \( f \) is convex if and only if \( D_f \) is a convex set and its Hessian is positive semi-definite for all \( x\in D_f \). For a single-variable function this reduces to \( f''(x) \geq 0 \). Geometrically this means that \( f \) has nonnegative curvature everywhere.
This condition is particularly useful since it gives us an procedure for determining if the function under consideration is convex, apart from using the definition.