Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Derivatives in terms of z_j^L

It is also easy to see that our previous equation can be written as

\delta_j^L =\frac{\partial {\cal C}}{\partial z_j^L}= \frac{\partial {\cal C}}{\partial a_j^L}\frac{\partial a_j^L}{\partial z_j^L},

which can also be interpreted as the partial derivative of the cost function with respect to the biases b_j^L , namely

\delta_j^L = \frac{\partial {\cal C}}{\partial b_j^L}\frac{\partial b_j^L}{\partial z_j^L}=\frac{\partial {\cal C}}{\partial b_j^L},

That is, the error \delta_j^L is exactly equal to the rate of change of the cost function as a function of the bias.