Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Feed-forward pass

Denote F the number of features, H the number of hidden neurons and C the number of categories. For each input image we calculate a weighted sum of input features (pixel values) to each neuron j in the hidden layer l :

z_{j}^{l} = \sum_{i=1}^{F} w_{ij}^{l} x_i + b_{j}^{l},

this is then passed through our activation function

a_{j}^{l} = f(z_{j}^{l}) .

We calculate a weighted sum of inputs (activations in the hidden layer) to each neuron j in the output layer:

z_{j}^{L} = \sum_{i=1}^{H} w_{ij}^{L} a_{i}^{l} + b_{j}^{L}.

Finally we calculate the output of neuron j in the output layer using the softmax function:

a_{j}^{L} = \frac{\exp{(z_j^{L})}} {\sum_{c=0}^{C-1} \exp{(z_c^{L})}} .