Reminding ourselves about Linear Regression

In our derivation of the various regression algorithms like Ordinary Least Squares or Ridge regression we defined the design/feature matrix \( \boldsymbol{X} \) as $$ \boldsymbol{X}=\begin{bmatrix} x_{0,0} & x_{0,1} & x_{0,2}& \dots & \dots x_{0,p-1}\\ x_{1,0} & x_{1,1} & x_{1,2}& \dots & \dots x_{1,p-1}\\ x_{2,0} & x_{2,1} & x_{2,2}& \dots & \dots x_{2,p-1}\\ \dots & \dots & \dots & \dots \dots & \dots \\ x_{n-2,0} & x_{n-2,1} & x_{n-2,2}& \dots & \dots x_{n-2,p-1}\\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2}& \dots & \dots x_{n-1,p-1}\\ \end{bmatrix}, $$ with \( \boldsymbol{X}\in {\mathbb{R}}^{n\times p} \), with the predictors/features \( p \) refering to the column numbers and the entries \( n \) being the row elements. We can rewrite the design/feature matrix in terms of its column vectors as $$ \boldsymbol{X}=\begin{bmatrix} \boldsymbol{x}_0 & \boldsymbol{x}_1 & \boldsymbol{x}_2 & \dots & \dots & \boldsymbol{x}_{p-1}\end{bmatrix}, $$ with a given vector $$ \boldsymbol{x}_i^T = \begin{bmatrix}x_{0,i} & x_{1,i} & x_{2,i}& \dots & \dots x_{n-1,i}\end{bmatrix}. $$