The Numpy function np.cov calculates the covariance elements using the factor \( 1/(n-1) \) instead of \( 1/n \) since it assumes we do not have the exact mean values. The following simple function uses the np.vstack function which takes each vector of dimension \( 1\times n \) and produces a \( 2\times n \) matrix \( \boldsymbol{W} \) $$ \boldsymbol{W}^T = \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \\ x_2 & y_2\\ \dots & \dots \\ x_{n-2} & y_{n-2}\\ x_{n-1} & y_{n-1} & \end{bmatrix}, $$
which in turn is converted into into the \( 2\times 2 \) covariance matrix \( \boldsymbol{C} \) via the Numpy function np.cov(). We note that we can also calculate the mean value of each set of samples \( \boldsymbol{x} \) etc using the Numpy function np.mean(x). We can also extract the eigenvalues of the covariance matrix through the np.linalg.eig() function.
# Importing various packages
import numpy as np
n = 100
x = np.random.normal(size=n)
print(np.mean(x))
y = 4+3*x+np.random.normal(size=n)
print(np.mean(y))
W = np.vstack((x, y))
C = np.cov(W)
print(C)