Simple Example

With these definitions, we can now rewrite our \( 2\times 2 \) correlation/covariance matrix in terms of a moe general design/feature matrix \( \boldsymbol{X}\in {\mathbb{R}}^{n\times p} \). This leads to a \( p\times p \) covariance matrix for the vectors \( \boldsymbol{x}_i \) with \( i=0,1,\dots,p-1 \) $$ \boldsymbol{C}[\boldsymbol{x}] = \begin{bmatrix} \mathrm{var}[\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_{p-1}]\\ \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_0] & \mathrm{var}[\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_{p-1}]\\ \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_1] & \mathrm{var}[\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_{p-1}]\\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_{2}] & \dots & \dots & \mathrm{var}[\boldsymbol{x}_{p-1}]\\ \end{bmatrix}, $$