Simple Example
With these definitions, we can now rewrite our
2\times 2
correlation/covariance matrix in terms of a moe general design/feature
matrix
\boldsymbol{X}\in {\mathbb{R}}^{n\times p} . This leads to a
p\times p
covariance matrix for the vectors
\boldsymbol{x}_i with
i=0,1,\dots,p-1
\boldsymbol{C}[\boldsymbol{x}] = \begin{bmatrix}
\mathrm{var}[\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_{p-1}]\\
\mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_0] & \mathrm{var}[\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_{p-1}]\\
\mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_1] & \mathrm{var}[\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_{p-1}]\\
\dots & \dots & \dots & \dots & \dots & \dots \\
\dots & \dots & \dots & \dots & \dots & \dots \\
\mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_{2}] & \dots & \dots & \mathrm{var}[\boldsymbol{x}_{p-1}]\\
\end{bmatrix},