Simple Example
With these definitions, we can now rewrite our \( 2\times 2 \)
correlation/covariance matrix in terms of a moe general design/feature
matrix \( \boldsymbol{X}\in {\mathbb{R}}^{n\times p} \). This leads to a \( p\times p \)
covariance matrix for the vectors \( \boldsymbol{x}_i \) with \( i=0,1,\dots,p-1 \)
$$
\boldsymbol{C}[\boldsymbol{x}] = \begin{bmatrix}
\mathrm{var}[\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_{p-1}]\\
\mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_0] & \mathrm{var}[\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_{p-1}]\\
\mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_1] & \mathrm{var}[\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_{p-1}]\\
\dots & \dots & \dots & \dots & \dots & \dots \\
\dots & \dots & \dots & \dots & \dots & \dots \\
\mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_{2}] & \dots & \dots & \mathrm{var}[\boldsymbol{x}_{p-1}]\\
\end{bmatrix},
$$