Making your own Bootstrap: Changing the Level of the Decision Tree

Let us bring up our good old boostrap example from the linear regression lectures. We change the linerar regression algorithm with a decision tree wth different depths and perform a bootstrap aggregate (in this case we perform as many bootstraps as data points \( n \)).

# Common imports
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.utils import resample
from sklearn.tree import DecisionTreeRegressor
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from IPython.display import Image 
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)

def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
    plt.savefig(image_path(fig_id) + ".png", format='png')


n = 100
n_boostraps = 100
maxdepth = 8

# Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)
error = np.zeros(maxdepth)
bias = np.zeros(maxdepth)
variance = np.zeros(maxdepth)
polydegree = np.zeros(maxdepth)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# we produce a simple tree first as benchmark
simpletree = DecisionTreeRegressor(max_depth=3) 
simpletree.fit(X_train_scaled, y_train)
simpleprediction = simpletree.predict(X_test_scaled)
for degree in range(1,maxdepth):
    model = DecisionTreeRegressor(max_depth=degree) 
    y_pred = np.empty((y_test.shape[0], n_boostraps))
    for i in range(n_boostraps):
        x_, y_ = resample(X_train_scaled, y_train)
        model.fit(x_, y_)
        y_pred[:, i] = model.predict(X_test_scaled)#.ravel()

    polydegree[degree] = degree
    error[degree] = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )
    bias[degree] = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )
    variance[degree] = np.mean( np.var(y_pred, axis=1, keepdims=True) )
    print('Polynomial degree:', degree)
    print('Error:', error[degree])
    print('Bias^2:', bias[degree])
    print('Var:', variance[degree])
    print('{} >= {} + {} = {}'.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))
 
mse_simpletree= np.mean( np.mean((y_test - simpleprediction)**2))
print("Simple tree:",mse_simpletree)
plt.xlim(1,maxdepth)
plt.plot(polydegree, error, label='MSE')
plt.plot(polydegree, bias, label='bias')
plt.plot(polydegree, variance, label='Variance')
plt.legend()
save_fig("baggingboot")
plt.show()