Xgboost on the Cancer Data

As you will see from the confusion matrix below, XGBoots does an excellent job on the Wisconsin cancer data and outperforms essentially all agorithms we have discussed till now.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import  train_test_split 
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
import scikitplot as skplt
import xgboost as xgb
# Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
#now scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

xg_clf = xgb.XGBClassifier()
xg_clf.fit(X_train_scaled,y_train)

y_test = xg_clf.predict(X_test_scaled)

print("Test set accuracy with Gradient Boosting and scaled data: {:.2f}".format(xg_clf.score(X_test_scaled,y_test)))

import scikitplot as skplt
y_pred = xg_clf.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
save_fig("xdclassiffierconfusion")
plt.show()
y_probas = xg_clf.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
save_fig("xdclassiffierroc")
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
save_fig("gdclassiffiercgain")
plt.show()


xgb.plot_tree(xg_clf,num_trees=0)
plt.rcParams['figure.figsize'] = [50, 10]
save_fig("xgtree")
plt.show()

xgb.plot_importance(xg_clf)
plt.rcParams['figure.figsize'] = [5, 5]
save_fig("xgparams")
plt.show()