Bagging

The plain decision trees suffer from high variance. This means that if we split the training data into two parts at random, and fit a decision tree to both halves, the results that we get could be quite different. In contrast, a procedure with low variance will yield similar results if applied repeatedly to distinct data sets; linear regression tends to have low variance, if the ratio of \( n \) to \( p \) is moderately large.

Bootstrap aggregation, or just bagging, is a general-purpose procedure for reducing the variance of a statistical learning method.