import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
# Load the data
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
#define methods
# Logistic Regression
logreg = LogisticRegression(solver='lbfgs')
# Support vector machine
svm = SVC(gamma='auto', C=100)
# Decision Trees
deep_tree_clf = DecisionTreeClassifier(max_depth=None)
#Scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Logistic Regression
logreg.fit(X_train_scaled, y_train)
print("Test set accuracy Logistic Regression with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
# Support Vector Machine
svm.fit(X_train_scaled, y_train)
print("Test set accuracy SVM with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
# Decision Trees
deep_tree_clf.fit(X_train_scaled, y_train)
print("Test set accuracy with Decision Trees and scaled data: {:.2f}".format(deep_tree_clf.score(X_test_scaled,y_test)))
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
# Data set not specificied
#Instantiate the model with 500 trees and entropy as splitting criteria
Random_Forest_model = RandomForestClassifier(n_estimators=500,criterion="entropy")
Random_Forest_model.fit(X_train_scaled, y_train)
#Cross validation
accuracy = cross_validate(Random_Forest_model,X_test_scaled,y_test,cv=10)['test_score']
print(accuracy)
print("Test set accuracy with Random Forests and scaled data: {:.2f}".format(Random_Forest_model.score(X_test_scaled,y_test)))
import scikitplot as skplt
y_pred = Random_Forest_model.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
plt.show()
y_probas = Random_Forest_model.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
plt.show()
Recall that the cumulative gains curve shows the percentage of the overall number of cases in a given category gained by targeting a percentage of the total number of cases.
Similarly, the receiver operating characteristic curve, or ROC curve, displays the diagnostic ability of a binary classifier system as its discrimination threshold is varied. It plots the true positive rate against the false positive rate.